EGU2020-19164
https://doi.org/10.5194/egusphere-egu2020-19164
EGU General Assembly 2020
© Author(s) 2020. This work is distributed under
the Creative Commons Attribution 4.0 License.

Comparing Halo Doppler lidar depolarization ratio with PollyXT

Ville Vakkari1,2, Ewan O'Connor1,3, Holger Baars4, and Johannes Bühl4
Ville Vakkari et al.
  • 1Finnish Meteorological Institute, Helsinki, FI-00101, Finland
  • 2Unit for Environmental Sciences and Management, North-West University, Potchefstroom, ZA-2520, South Africa
  • 3Department of Meteorology, University of Reading, Reading, UK
  • 4Leibniz Institute for Tropospheric Research (TROPOS), Leipzig, Germany

Depolarization ratio is highly valuable in lidar-based aerosol classification and can be used to quantify the contributions of different aerosol types to elevated layers [1]. Typically, aerosol particle depolarization ratio is determined at relatively short wavelengths of 355 nm and/or 532 nm, though some multi-wavelength case studies including 1064 nm have shown strong spectral dependency [2,3]. Here, we demonstrate that Halo Photonics Stream Line Doppler lidars can be used to retrieve aerosol particle depolarization ratio at 1.5 µm wavelength.

 

We utilize measurements in April-May 2017 at Limassol, Cyprus to compare the Halo 1.5 µm aerosol particle depolarization ratio with Polly XT aerosol particle depolarization ratio. Recently developed post-processing [4] enables retrieving weak signals (as low as -32 dB) with the Halo Doppler lidar. At Limassol, we were able to determine particle depolarization ratio for several cases of mineral dust up to 3 km above ground. Generally, particle depolarization ratio for mineral dust at 1.5 µm appears higher than at shorter wavelengths of 355 nm and 532 nm retrieved by Polly XT. Overall, our results indicate that Halo Doppler lidars can add another wavelength at 1.5 µm to studies on the spectral dependency of aerosol depolarization ratio, at least in the lowest 2-3 km above ground.

 

[1] Mamouri, R.-E. and Ansmann, A.: Potential of polarization/Raman lidar to separate fine dust, coarse dust, maritime, and anthropogenic aerosol profiles, Atmos. Meas. Tech., 10, 3403-3427, https://doi.org/10.5194/amt-10-3403-2017, 2017.

[2] Burton, S. P., Hair, J. W., Kahnert, M., Ferrare, R. A., Hostetler, C. A., Cook, A. L., Harper, D. B., Berkoff, T. A., Seaman, S. T., Collins, J. E., Fenn, M. A. and Rogers, R. R.: Observations of the spectral dependence of linear particle depolarization ratio of aerosols using NASA Langley airborne High Spectral Resolution Lidar, Atmos. Chem. Phys., 15, 13453–13473, doi:10.5194/acp-15-13453-2015, 2015.

[3] Haarig, M., Ansmann, A., Baars, H., Jimenez, C., Veselovskii, I., Engelmann, R. and Althausen, D.: Depolarization and lidar ratios at 355, 532, and 1064 nm and microphysical properties of aged tropospheric and stratospheric Canadian wildfire smoke, Atmos. Chem. Phys., 18, 11847–11861, doi:10.5194/acp-18-11847-2018, 2018.

[4] Vakkari, V., Manninen, A. J., O’Connor, E. J., Schween, J. H., van Zyl, P. G. and Marinou, E.: A novel post-processing algorithm for Halo Doppler lidars, Atmos. Meas. Tech., 12(2), 839–852, doi:10.5194/amt-12-839-2019, 2019.

How to cite: Vakkari, V., O'Connor, E., Baars, H., and Bühl, J.: Comparing Halo Doppler lidar depolarization ratio with PollyXT, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-19164, https://doi.org/10.5194/egusphere-egu2020-19164, 2020