EGU2020-19410, updated on 07 Nov 2024
https://doi.org/10.5194/egusphere-egu2020-19410
EGU General Assembly 2020
© Author(s) 2024. This work is distributed under
the Creative Commons Attribution 4.0 License.

The Sentinel-1 CNR-IREA SBAS service of the European Space Agency’s Geohazard Exploitation Platform (GEP) as a powerful tool for landslide activity detection and monitoring

Cristina Reyes-Carmona1, Jorge Pedro Galve1, Anna Barra2, Oriol Monserrat2, Rosa María Mateos3, José Miguel Azañón1, José Vicente Pérez-Peña1, and Patricia Ruano1
Cristina Reyes-Carmona et al.
  • 1University of Granada, Departamento de Geodinámica, Spain
  • 2Centre Tecnològic de Telecomunicacions de Catalunya (CTTC), Spain
  • 3Instituto Geológico y Minero de España (IGME), Spain

The European Space Agency’s Geohazard Exploitation Platform (GEP) (https://geohazards-tep.eu/#!) is a web-based platform through users can perform independent analysis by exploiting satellite data. This platform hosts several thematic apps that allow to identify, monitor and asses hazard related to geological processes such as volcanism, land subsidence or landslides. The Sentinel-1 CNR-IREA SBAS service is one of these thematic apps that consists on a Differential SAR Interferometry (DInSAR) processing chain for the generation of Earth deformation time series and mean velocity maps of surface ground displacement. In the last decades, DInSAR techniques have proved to be powerful tools to detect and monitor active processes related to geological ground instability issues. In this context, the Sentinel-1 GEP service seems to be a promising way to perform independent and high temporal resolution DInSAR analysis from any part of the world in just 24 hours.

At present time, GEP continues being fine-tuned and users are working to validate the obtained results by comparing them with other data. In this way, it is possible not only to evaluate the advantages and limitations of the platform and but also to acquire new information about geological active processes around the world. In this work, we present an overview of different locations in the Mediterranean Basin and northwestern South America where we are accounted for previous knowledge of active landslide activity. Where there was previous InSAR analysis, we compared recent InSAR velocity maps with displacement rates that we obtained by the Sentinel-1 CNR-IREA SBAS tool to check their reliability. Moreover, we explored areas with no previous monitoring information but field evidence of ground instability. Beyond this, we considered this service as a successful tool to perform preliminary analyses of Sentinel-1 images in non-investigated areas to spot hazards and to delimit zones for performing detailed investigations. Additionally, some other unsatisfactory results allowed us to draw conclusions about technical constrains of the GEP tool and further asses its usefulness.

 

This work has been developed in the framework of the RISKCOAST project, founded by the Interreg SUDOE program.

How to cite: Reyes-Carmona, C., Galve, J. P., Barra, A., Monserrat, O., Mateos, R. M., Azañón, J. M., Pérez-Peña, J. V., and Ruano, P.: The Sentinel-1 CNR-IREA SBAS service of the European Space Agency’s Geohazard Exploitation Platform (GEP) as a powerful tool for landslide activity detection and monitoring, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-19410, https://doi.org/10.5194/egusphere-egu2020-19410, 2020.

Displays

Display file