Response of N2O emissions to logging residue piles of Norway spruce, Scots pine and silver birch
- 1Natural Resources Institute Finland, Helsinki, Finland (tiina.tormanen@luke.fi)
- 2Natural Resources Institute Finland, Espoo, Finland
Utilization of forest bioenergy is increasing; however, the overall environmental impacts of forest bioenergy utilization are not fully understood. Especially effects on N2O emissions in mineral soils are less studied. With current harvesting practices, either whole-tree-harvest or stem-only-harvest, piles of logging residues are left on the forest floor. As a result, soil nitrogen (N) cycling processes can be accelerated on clear cut area under the piles, especially net nitrification. When N is transformed to more mobile form, the risk for N losses via nitrous oxide (N2O) emissions from the forest floor may increase.
We studied how logging residue piles of three tree species, Norway spruce (Picea abies (L.) Karst.), Scots pine (Pinus sylvestris L.) and silver birch (Betula pendula Roth.), influence gaseous losses of N after clear-cut. A Norway spruce dominated mixed stand on a mineral soil site was clear-cut and N2O emissions were monitored. There were four treatments; three tree species treatments consisting of 40 kg m-2 of fresh logging residues and control plot without residues as an additional treatment. Effects of logging residue piles on N2O emissions were monitored over 4 growing season with closed chamber technic. Simultaneously soil temperatures were recorded over 2 growing season. Soil denitrification activity and the contribution of nitrification and denitrification to N2O production were determined in laboratory experiments.
Logging residue piles lowered and balanced fluctuation of soil temperatures. N2O fluxes peaked under the piles during the second and third growing season after the establishment of the piles; however inconsistent fluxes tended to be low. The production of N2O was driven by both nitrification and denitrification processes, the proportion depending on the tree species. Our results indicate that logging residue piles accelerate N losses as gaseous form; however studies on the same field experiment shows that most of the N losses occur through soil percolation waters. Spruce residues tend to stimulate N2O emissions longer compared to other tree species. There was a positive correlation with net nitrification and microbial biomass C (Törmänen et al. 2018, FORECO). These results have implications for sustainable and productive forest management practices and nutrition of re-growing vegetation.
How to cite: Törmänen, T., Lindroos, A.-J., Kitunen, V., and Smolander, A.: Response of N2O emissions to logging residue piles of Norway spruce, Scots pine and silver birch , EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-20450, https://doi.org/10.5194/egusphere-egu2020-20450, 2020