EGU2020-20506
https://doi.org/10.5194/egusphere-egu2020-20506
EGU General Assembly 2020
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.

The role of trees in the CH4 and N2O exchange in boreal forest

Elisa Vainio1,2, Luca Galeotti1,2,3, Homa Ghasemi1,2, Iikka Haikarainen1,2, Katerina Machacova4, Marjo Patama1,2, Petteri Pyykkö1,2, Lilja Rauna1,2, and Mari Pihlatie1,2,5
Elisa Vainio et al.
  • 1Institute for Atmospheric and Earth System Research (INAR) / Forest Science, University of Helsinki, Helsinki, Finland (elisa.vainio@helsinki.fi)
  • 2Environmental Soil Science, Department of Agricultural Sciences, University of Helsinki, Helsinki, Finland
  • 3School of Agriculture and Veterinary Medicine, University of Bologna, Bologna, Italy
  • 4Department of Ecosystem Trace Gas Exchange, Global Change Research Institute of the Czech Academy of Sciences, Brno, Czech Republic
  • 5Viikki Plant Science Centre (ViPS), University of Helsinki, Finland

Trees have been demonstrated to play a role in the methane (CH4) and nitrous oxide (N2O) cycling in forests. Emissions of these two greenhouse gases have been observed from tree stems and shoots. The stem emissions of both CH4 and N2O have been suggested to originate from the soil, however, their transportation mechanisms might differ, and furthermore, at least the stem-emitted CH4 can also be produced within tree tissue. Boreal forests are considered a sink of CH4 due to predominant soil oxidation, but when CH4 is taken up by the roots, it bypasses the CH4-oxidation zone in the surface soil. The stem N2O fluxes at the boreal zone have been shown to follow seasonal physiological activity of trees. However, studies on tree CH4 and N2O fluxes are scarce in the boreal zone.

We studied the tree stem CH4 and N2O exchange from the stems of Scots pine, downy birch, and Norway spruce – in total 47 trees, growing at six study plots with naturally different soil moisture and ground vegetation conditions (6–9 trees per plot). The measurements were performed during July–August 2017 at the Hyytiälä SMEAR II (Station for Measuring Ecosystem-Atmosphere Relations) ICOS (Integrated Carbon Observation System) research site, in southern Finland. In addition to the stems, we measured forest floor CH4 and N2O fluxes at all the plots, and shoot CH4 fluxes from birch and pine at one plot. The stem chambers were installed at the tree bases, ca. 30 cm above the soil surface. Additionally, from the trees with the shoot measurements, we measured the stem fluxes from several heights in order to study the flux variation in the stem vertical profile. All the flux measurements were conducted with closed chambers – the stem and forest floor measurements were performed by using manual sampling and gas chromatography, while a portable greenhouse gas analyser was used for the shoot measurements. Soil moisture and soil temperature were monitored at the study plots throughout the measurement period.

The results show that all the studied tree species emit both CH4 and N2O from stems. Birches growing at one plot with waterlogging conditions stand out with the highest stem CH4 emissions. Concerning the N2O emissions, birch stems showed significantly higher emissions than pine stems. The results of the shoot measurements indicate that both birch and pine emit small amounts of CH4 from their shoots, but the driving factors of the emissions may be different for the two species. Our aim is to model the spatial variability of the stem CH4 and N2O fluxes at the site, and to develop an upscaling method combining the stem and forest floor CH4 and N2O exchange, based on an existing modelling work on the forest floor CH4 fluxes at the site.

 

Acknowledgements: This research was supported by the Academy of Finland (288494, 2884941), National Centre of Excellence (272041), ICOS-FINLAND (281255), Czech Science Foundation (17-18112Y) and National Sustainability Program I (LO1415), and the European Research Council (ERC) under Horizon 2020 research and innovation programme, grant agreement No (757695).

How to cite: Vainio, E., Galeotti, L., Ghasemi, H., Haikarainen, I., Machacova, K., Patama, M., Pyykkö, P., Rauna, L., and Pihlatie, M.: The role of trees in the CH4 and N2O exchange in boreal forest, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-20506, https://doi.org/10.5194/egusphere-egu2020-20506, 2020