17O18O and 18O18O in ice core O2 from Greenland: implications to reconstruct past atmospheric photochemistry
- 1Institute for Marine and Atmospheric Research Utrecht, Utrecht, Netherlands (amzadhussain2000@gmail.com)
- 2Atmospheric Chemistry Department, Max Planck Institute for Chemistry, Mainz, Germany
- 3Niels Bohr Institute, University of Copenhagen, Denmark
Abundances of 17O18O and 18O18O (also called clumped isotopes and denoted by Δ35 and Δ36) of O2 in firn and ice core air are novel tracers that can be useful to study past changes in atmospheric photochemistry and temperature. We present Δ35 and Δ36 values measured in firn and ice core air O2 from North Greenland (NEEM; 77.45°N 51.06°W). The aim is to reconstruct the preindustrial-industrial, Holocene and glacial-interglacial variation in the tropospheric ozone photochemistry and temperature. Measurements of Δ35 and Δ36 are carried out using a high-resolution stable isotope ratio mass spectrometer Thermo Fisher 253 ULTRA[1]. Our measurements of Δ35 and Δ36 across past air, from archive samples, to the modern-day show significant changes in the atmospheric photochemistry via ozone burdening and stratospheric- tropospheric transport processes. We will present the measurement results along with a detailed discussion on the dominant process using explicit dynamic simulations of ∆36 in the AC-GCM EMAC model [2,3,4].
How to cite: Laskar, A., Peethambaran, R., Gromov, S., Blunier, T., and Roeckmann, T.: 17O18O and 18O18O in ice core O2 from Greenland: implications to reconstruct past atmospheric photochemistry , EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-20741, https://doi.org/10.5194/egusphere-egu2020-20741, 2020
This abstract will not be presented.