EGU2020-2118, updated on 12 Jun 2020
https://doi.org/10.5194/egusphere-egu2020-2118
EGU General Assembly 2020
© Author(s) 2020. This work is distributed under
the Creative Commons Attribution 4.0 License.

Simulating debris flows triggered by rainfall in Shiyang gully, China

Jiaoyang Li
Jiaoyang Li
  • Beijing Normal University, Faculty of Geographical Science, China (201821051182@mail.bnu.edu.cn)

A debris flow occurred in Shiyang gully, located between Hebei Province and Beijing, on 8 June 2017, resulting in 6 people dead or injured. Short-term heavy rainfall is the main factor that triggered this event, however, the meteorological agency didn’t forecast this event very well. In this study, numerical simulation using FLO-2D was performed to reproduce the debris flow event (flow depths, flow velocities, and sediment depositions)occurred in 2017. The results of the field survey showed that the influential range of debris flow is consistent with the simulation results. Simulated depth accuracy is greater than 70%. Then, we used FLO-2D is calibrated to simulate debris flows disasters under different rainfall scenarios. The results showed that, the Beijing needs to be warned when the accumulated precipitation is 40mm at the rainfall intensity of 1mm/min. As cumulative rainfall and rainfall intensity increase, the risk of Shiyang gully is increasing.  This study used FLO-2D simulated process of debris flows triggered by rainfall. The results showed the early warning time and influential range for different intensity ,accumulated precipitation, and rain area, which is beneficial to the debris flow management in the western mountainous areas of Beijing.

How to cite: Li, J.: Simulating debris flows triggered by rainfall in Shiyang gully, China, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-2118, https://doi.org/10.5194/egusphere-egu2020-2118, 2020

This abstract will not be presented.