EGU2020-22176
https://doi.org/10.5194/egusphere-egu2020-22176
EGU General Assembly 2020
© Author(s) 2020. This work is distributed under
the Creative Commons Attribution 4.0 License.

Detrital zircon U-Pb and Hf isotopes study of the Longshoushan Belt in the southwestern margin of the Alxa Block: Constraints on the tectonic evolution and affinity of the Alxa Block

Jingna Liu1,2, Changqing Yin1,2, Jian Zhang1,2, Jiahui Qian1,2, Kaiyuan Xu1,2, Shangjing Wu1,2, and Nanqing Xu1,2
Jingna Liu et al.
  • 1Guangdong Provincial Key Lab of Mineral Resources & Geological Processes, School of Earth Sciences and Engineering, Sun Yat-sen University, Guangzhou 510275, China
  • 2Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), China

     The tectonic evolution and affinity of the Alxa Block has long been controversial. The NW-SE trending Longshoushan Belt is in the southwestern margin of the Alxa Block, separated the Qilian Block. In this study, we present zircon U-Pb and Hf-isotope data of the middle and eastern Longshoushan, which could constrain the provenance and formation age of the Longshoushan Belt, and further constrain the tectonic evolution and affinity of the Alxa Block. The U-Pb ages of the detrital zircons from the amphibolite-facies metamorphosed volcanic-sedimentary rocks of the middle Longshoushan range from 3006 to 1981 Ma (peak at 2010 Ma), which were consistent with the Alxa Block and the western North China Craton, indicating that the middle Longshoushan was deposited in the Palaeoproterozoic, not in the Archean, and had tectonic affinity with the Alxa Block and the western North China Carton. Combined with the identical crustal growth events at 2.4-2.5 Ga of the middle Longshoushan, the Alxa Block and the western North China Craton, the Alxa Block was an integrated part of the Western Block of the North China Craton. The U-Pb ages of the detrital zircons from the greenschist-facies metamorphosed volcanic-sedimentary rocks of the eastern Longshoushan range from 3389 to 529 Ma (peak at 2.5 Ga and 1.0 Ga), which were highly consistent with Hexi Corridor, indicating that the eastern Longshoushan was deposited in the Cambrian, and had an affinity with the Hexi Corridor. In the Early Palaeozoic, the North Qilian Ocean subducted the Alxa Block and formed a typical trench-arc-basin system. With the closure of the North Qilian Ocean, the Central Qilian Block collided with the Alxa Block, formed the eastern Longshoushan, which was a foreland basin in the Hexi Corridor.

How to cite: Liu, J., Yin, C., Zhang, J., Qian, J., Xu, K., Wu, S., and Xu, N.: Detrital zircon U-Pb and Hf isotopes study of the Longshoushan Belt in the southwestern margin of the Alxa Block: Constraints on the tectonic evolution and affinity of the Alxa Block, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-22176, https://doi.org/10.5194/egusphere-egu2020-22176, 2020

This abstract will not be presented.