Bridging gaps between engineering capability and science applications across educational and science organisations
- CSIRO Mineral Resources, Perth, WA, Australia
The scientific discovery process in geosciences inevitably involves the analysis of many heterogeneous datasets collected from various sources, e.g., field sampling, laboratories, historical data, that are often presented from different perspectives. Data interoperability, standardised data ingest and classification are critical factors in enabling comprehensive and interdisciplinary data analysis. The AuScope initiative that has been run for over a decade in Australia has produced an open-standards technology stack that has had a profound impact allowing open access to vast data holdings previously hardly accessible to researchers. The developed data delivery technology erased project boundaries, allowed sharing data with international community initiatives (e.g., INSPIRE, OneGeology), and equipped researchers with tools allowing the application of new numerical methods to a broader range of available data sets. It should be noted that in mineral exploration projects data interoperability challenges are not always of a technical nature, social aspects must be also considered to facilitate greater uptake.
This year, AuScope has introduced the Engage activity that is specifically designed to increase collaboration with and between research institutions, developing new pilot scientific applications, enabling access and up-scaling existing applications through intensive collaboration sprints of three months. A steering committee was formed to collect, assess and prioritise mini-project proposals from a range of institutions in research and academic sectors. Each project was equipped with a dedicated team of researchers and engineers to tackle a specific carefully scoped scientific problem with a measurable impact. The first iteration of the program has seen a diverse spectrum of projects including the establishment of a data catalogue for a University laboratory as part of a larger laboratory network development effort, web-enabling numerical legacy codes, containerisation of virtual research environments for educational purposes and a web application User Experience improvement project.
This case study will walk through the social aspects of our experience in cross-institutional collaboration, showcase our learnings, highlight our wins and challenges, and outline the vision for future work.
How to cite: Golodoniuc, P. and Fraser, R.: Bridging gaps between engineering capability and science applications across educational and science organisations, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-22279, https://doi.org/10.5194/egusphere-egu2020-22279, 2020