EGU2020-22677
https://doi.org/10.5194/egusphere-egu2020-22677
EGU General Assembly 2020
© Author(s) 2020. This work is distributed under
the Creative Commons Attribution 4.0 License.

Common evaluation/evolution of cloud-radiation processes from 25km S2S to 3km NWP

Stan Benjamin, Joseph Joseph Olson, Shan Sun, Georg Georg Grell, and Curtis Curtis Alexander
Stan Benjamin et al.

Subgrid-scale cloud representation and the closely related surface-energy balance continue to be a central challenge from subseasonal-to-seasonal models down to storm-scale models applied for forecast duration of only a few hours. Previously, NOAA/ESRL confirmed this issue from 3-km model (HRRR using WRF-ARW) for short-range forecasting including sub-grid-scale cloud representation up to a 25-km subseasonal model (FV3-GFS) testing a common suite of scale-aware physical parameterizations.  

In a major physics suite component -- modified representation of subgrid cloud water resulted in much improved agreement with radiation measurements as shown with 2018-2020 testing of the 3km HRRR model. Latest results will be shown using SURFRAD radiation and METAR ceiling observations, indicating much improved bias in downward solar radiation and in cloud location (via mean absolute error metric), as well as with 2m temperature and precipitation.

In addition, new evaluations with the same convection-allowing suite (“mesoscale” suite) of physical parameterizations revised further for subseasonal 30-day tests over summer and winter periods with the 25km NOAA FV3-GFS model. These results are compared with CERES-estimated cloud and downward solar radiation fields. The radiation results from this very preliminary subseasonal test with the ESRL-HRRR physics suite will be compared with previous subseasonal tests using the GFS physics suite and at different horizontal resolution.  This global application now confirms much better downward solar-radiation results over oceans for both January and June from a Nov-2019 version over a 2018 of the “mesoscale” suite.

Background: NOAA Earth System Research Laboratory, together with NCAR, has developed this parameterization suite (turbulent mixing, deep/shallow convection, 9-layer land/snow/vegetation/lake model) to improve PBL biases (temperature and moisture) including better representation of clouds and precipitation. This parameterization suite development has been accompanied by an effort for improved data assimilation of clouds, near-surface observations and radar for the atmosphere-land system.

Subgrid-scale cloud representation continues to be a central challenge from subseasonal-to-seasonal models down to storm-scale models applied for forecast duration of only a few hours.   Previously, NOAA/ESRL confirmed this issue from 3-km model (HRRR) for short-range forecasting including sub-grid-scale cloud representation up to a 60-km subseasonal model testing a common suite of scale-aware physical parameterizations.   Some progress has been made in 2018-2019 to substantially reduce cloud deficiency and excessive downward solar radiation at least over land areas.

Recent development and refinements to this common suite of physical parameterizations for scale-aware deep/shallow convection and boundary-layer mixing over this wide range of time and spatial scales will be reported in this presentation showing some progress. Evaluation of components of this suite is being evaluated for cloud/radiation (using SURFRAD, CERES, METAR ceiling) and near-surface (METAR, mesonet, aircraft, rawinsonde).

NOAA Earth System Research Laboratory, together with NCAR, has developed this parameterization suite (turbulent mixing, deep/shallow convection, 9-layer land/snow/vegetation model) to improve PBL biases (temperature and moisture) including better representation of clouds and precipitation. This parameterization suite development has been accompanied by an effort for improved data assimilation of clouds, near-surface observations and radar for the atmosphere-land system.  

The MYNN boundary-layer EDMF scheme (Olson, et al 2019), RUC land-surface model (Smirnova et al. 2016 MWR), Grell-Freitas scheme (2014, Atmos. Chem. Phys.), and aerosol-aware cloud microphysics (Thompson and Eidhammer 2015) have been applied and tested extensively for the NOAA hourly updated 3-km High-Resolution Rapid Refresh (HRRR) and 13-km Rapid Refresh model/assimilation systems over the United States and North America.   This mesoscale but also scale-aware suite is being tested,

How to cite: Benjamin, S., Joseph Olson, J., Sun, S., Georg Grell, G., and Curtis Alexander, C.: Common evaluation/evolution of cloud-radiation processes from 25km S2S to 3km NWP, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-22677, https://doi.org/10.5194/egusphere-egu2020-22677, 2020