EGU2020-2314
https://doi.org/10.5194/egusphere-egu2020-2314
EGU General Assembly 2020
© Author(s) 2020. This work is distributed under
the Creative Commons Attribution 4.0 License.

The Alteration of Reservoir-Cap’s System During CO2 Charging in Huangqiao Region, China

Bing Zhou and Zengmin Lun
Bing Zhou and Zengmin Lun
  • SINOPEC, Petroleum Exploration and Production Research Institute, China (zhoubing.syky@sinopec.com)

Revealing the alteration mechanism of reservoir-cap rock system during CO2-rich fluid charging is meaningful to the study of CO2 geological storage, as well as when CO2 enhance oil recovery. The study is taking the Permian Longtan reservoir formation and Dalong cap layer of Huangqiao and Jurong region in Lower Yangtze area in China as comparative study objects, in order to understand the differences between presence and absence of CO2 in the similar geological background. The samples of reservoirs and cap rock in both regions are analysized through petrological and geochemistry method. The authigenic minerals in the reservoirs of Huangqiao region are mainly overgrowth quartz and kaolinite. A small amount of dawsonite is developed in Huangqiao, while undeveloped in Jurong region due to the absent of CO2. The content of secondary quartz is lower in Jurong than in Huangqiao. The reservoir’s average porosity in Huangqiao is obviously higher than in Jurong, because of the feldspar’s dissolution during CO2 charging. The cap rocks in the two areas are both black block mudstones. There were micro-cracks developed in the cap rocks of Huangqiao region, in which have been refilled with calcite veins. Carbon isotope data shows that calcite was formed from CO2-water-rock interaction. The result indicates that CO2 charging could cause a major dissolution of feldspar in reservoir, and precipitate a typical authigenic mineral assemblage of dawsonite, secondary quartz and kaolinite. The continuous activity of the CO2-rich fluid leads to re-precipitation of carbonate minerals in cap rock, which is improving its sealing ability.

How to cite: Zhou, B. and Lun, Z.: The Alteration of Reservoir-Cap’s System During CO2 Charging in Huangqiao Region, China, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-2314, https://doi.org/10.5194/egusphere-egu2020-2314, 2020