EGU2020-232
https://doi.org/10.5194/egusphere-egu2020-232
EGU General Assembly 2020
© Author(s) 2020. This work is distributed under
the Creative Commons Attribution 4.0 License.

2017-2019 SSE sequence and its interaction with large earthquakes in Mexico

Ekaterina Kazachkina1, Mathilde Radiguet2, Nathalie Cotte2, Jorge Jara3, Andrea Walpersdorf2, and Vladimir Kostoglodov1
Ekaterina Kazachkina et al.
  • 1UNAM, Institute of Geophysics, Seismology, Mexico (kazachkina@igeofisica.unam.mx)
  • 2Univ. Grenoble Alpes, Univ. Savoie Mont-Blanc, CNRS, IRD, IFSTTAR, ISTerre, France
  • 3École normale supérieure, Geology, France

An intriguing sequence of a 2-stage SSE in Guerrero and a simultaneous SSE in Oaxaca took place in Mexico in 2017-2019. Three large earthquakes occur during these SSEs adding complexity to the observed surface deformations. The objective of this work is to explain the interaction between the overlapping seismic and aseismic events through the analysis of continuous GPS observations.

We perform kinematic inversion of the GPS time series solving for the cumulative slip distribution on the subduction interface due to two SSEs, using Independent Component Analysis Inversion Method (ICAIM, Gualandi, 2015). The daily position time series for 2017-2019 are obtained by processing continuous data using GAMIT/GLOBK 10.7 (Herring et al, 2018). Strong postseismic signals generated by the following earthquakes 08/09/2017 Mw8.2 in Tehuantepec, 19/09/2017 Mw7.1 in Puebla-Morelos and 16/02/2018 Mw7.2 in Pinotepa are removed using the ICA decomposition.

Our results show complex slip evolution on the subduction interface. We observe a clear change of cumulative seismic moment release rate after large seismic events of 2017 and after the earthquake in Pinotepa in 2018. The occurrence of Mw8.2 and Mw7.1 events notably slowed down the slip propagation of the Guerrero SSE. Continuous SSE in Oaxaca propagates from the northeast near the city of Oaxaca (-97.00°E, 16.70°N) towards the southwest approaching Pinotepa (-98.00°E, 17.00°N). Guerrero SSE migrates from the origin of its 1st phase near Tecpan (-100.50°E, 17.50°N) southeastwards to Acapulco (-99.50°E, 17.20°N) where the 2nd stage develops. Therefore the stress changes induced by the two aseismic events likely triggered the Mw7.2 Pinotepa earthquake (-98.01°E, 16.22°N).

How to cite: Kazachkina, E., Radiguet, M., Cotte, N., Jara, J., Walpersdorf, A., and Kostoglodov, V.: 2017-2019 SSE sequence and its interaction with large earthquakes in Mexico, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-232, https://doi.org/10.5194/egusphere-egu2020-232, 2019