EGU2020-243
https://doi.org/10.5194/egusphere-egu2020-243
EGU General Assembly 2020
© Author(s) 2020. This work is distributed under
the Creative Commons Attribution 4.0 License.

GIS and remote sensing-based framework for urban greenspaces management: assessment of vulnerability to typhoons in Taiwan

Kim-Anh Nguyen and Yuei-An Liou
Kim-Anh Nguyen and Yuei-An Liou
  • (kimanh.nguyen2010@hotmail.com)

Typhoon is one of the most severe natural hazards. It can cause great damages to the people, properties, and greenspace infrastructure. Greenspaces include parks, gardens, play grounds, plants, etc. In urban areas, greenspaces are highly prone to be affected by typhoons resulting dangers to humans, infrastructure, and transportation. This study introduces a vulnerable assessment framework of urban greenspaces (UGSs) to typhoons by using remote sensing data and GIS techniques. The key purpose is to mitigate potential damages of urban greenspace and other related risks associated with typhoons. Firstly, we analyze the typhoon characteristics; identify the impacts of typhoons on the UGSs in Taiwan; and derive the UGSs information (biological and physical features) from multi-sensor satellite images to build GIS database for the UGS server for further assessment. Secondly, we derive the soil characteristics from the soil map and remote sensing data; propose an vulnerable assessment framework to evaluate the vulnerability of the UGSs to typhoon in major cities in Taiwan. Thirdly, we improve and test the R3GIS platform after integrating with new tools of assessing vulnerability of UGSs to typhoons for demonstration of its benefits to UGS management in Taiwan. The outcomes will be expected to support warning system to serve the related authorities for mitigating the damages of typhoons on UGSs and communities. The vulnerability of UGS in Taiwan to typhoon winds can be assessed via three domains: (i) typhoon characteristics; (ii) UGSs features; and (iii) soil composition. These components will be captured via multi-sub indicators that reveal the possibility whether trees in the UGS will fail during the threat of typhoons and related risks. Thus, the combination of all mentioned domains/indicators in the vulnerability assessment framework thas a potential to provide a warning to related authorities with possible solutions for lesseing the damages of both UGS and public properties. In EGU meeting we are going to introduce an overall concept of the research work and the first phase results of the study such as typhoon characteristics and features of urban greenspaces in Taiwan, and the conceptual UGS vulnerability assessment framework.

How to cite: Nguyen, K.-A. and Liou, Y.-A.: GIS and remote sensing-based framework for urban greenspaces management: assessment of vulnerability to typhoons in Taiwan, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-243, https://doi.org/10.5194/egusphere-egu2020-243, 2019

Displays

Display file