EGU2020-3102, updated on 12 Jun 2020
https://doi.org/10.5194/egusphere-egu2020-3102
EGU General Assembly 2020
© Author(s) 2020. This work is distributed under
the Creative Commons Attribution 4.0 License.

Global Land Surface Temperature from historical NOAA AVHRR datasets (1981-2000)

Jin Ma1,2, Ji Zhou1, Frank-Michael Göttsche2, and Shaofei Wang1
Jin Ma et al.
  • 1School of Resources and Environment,University of Electronic Science and Technology of China, China (majin@std.uestc.edu.cn)
  • 2Institute of Meteorology and Climate Research, Karlsruhe Institute of Technology, Germany

As one of the most important indicators in the energy exchange between land and atmosphere, Land Surface Temperature (LST) plays an important role in the research of climate change and various land surface processes. In contrast to in-situ measurements, satellite remote sensing provides a practical approach to measure global and local land surface parameters. Although passive microwave remote sensing offers all-weather observation capability, retrieving LST from thermal infra-red data is still the most common approach. To date, a variety of global LST products have been published by the scientific community, e.g. MODIS and (A)ASTR /SLSTR LST products, and used in a broad range of research fields. Several global and regional satellite retrieved LSTs are available since 1995. However, the temporal-spatial resolution before 2000 is generally considerably lower than that after 2000. According to the latest IPCC report, 1983 – 2012 are the warmest 30 years for nearly 1400 years. Therefore, for global climate change research, it is meaningful to extend the time series of global LST products with a relatively higher temporal-spatial resolution to before 2000, e.g. that of NOAA AVHRR. In this study, global daily NOAA AVHRR LST products with 5-km spatial resolution were generated for 1981-2000. The LST was retrieved using an ensemble of RF-SWAs (Random Forest and Split-Window Algorithm). For a maximum uncertainty in emissivity and water vapor content of 0.04 and 1.0 g/cm2, respectively, the training and testing with simulated datasets showed a retrieval accuracy with MBE of less than 0.1 K and STD of 1.1 K. The generated RF-SWA LST product was also evaluated against in-situ measurements: for water sites of the National Data Buoy Center (NDBC) between 1981 and 2000, it showed an accuracy similar to that for the simulated data, with a small MBE of less than 0.1 K and a STD between 0.79 K and 1.02 K. For SURFRAD data collected between 1995 and 2000, the MBE is -0.03 K with a range of -1.20 K – 0.54 K and a STD with a mean of 2.55 K and a range of 2.08 K – 3.0 K (site dependent). As a new global historical dataset, the RF-SWA LST product can help to close the gap in long-term LST data available to climate research. Furthermore, the data can be used as input to land surface process models, e.g. the Community Land Model (CLM). In support of the scientific research community, the RF-SWA LST product will be freely available at the National Earth System Science Data Center of China (http://www.geodata.cn/).

How to cite: Ma, J., Zhou, J., Göttsche, F.-M., and Wang, S.: Global Land Surface Temperature from historical NOAA AVHRR datasets (1981-2000), EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-3102, https://doi.org/10.5194/egusphere-egu2020-3102, 2020

Displays

Display file