EGU2020-3169
https://doi.org/10.5194/egusphere-egu2020-3169
EGU General Assembly 2020
© Author(s) 2020. This work is distributed under
the Creative Commons Attribution 4.0 License.

Properties of OH roto-vibrational level populations in the Earth's mesopause region

Stefan Noll1,2, Holger Winkler3, Oleg Goussev2, and Bastian Proxauf4
Stefan Noll et al.
  • 1Institut für Physik, Universität Augsburg, Augsburg, Germany
  • 2Deutsches Fernerkundungsdatenzentrum, Deutsches Zentrum für Luft- und Raumfahrt, Weßling-Oberpfaffenhofen, Germany
  • 3Institut für Umweltphysik, Universität Bremen, Bremen, Germany
  • 4Max-Planck-Institut für Sonnensystemforschung, Göttingen, Germany

Chemiluminescent OH airglow emission dominates the nighttime radiation of the Earth's atmosphere in the near-infrared wavelength regime. It is an important indicator of the state and variability of the mesopause region at about 90 km. However, the interpretation of the line intensities suffers from uncertainties in the knowledge of the complex roto-vibrational level population distribution, which is far from local thermodynamic equilibrium (LTE). For a better understanding, we investigated these populations in detail mainly based on a high-quality high-resolution mean spectrum from the UVES echelle spectrograph at Cerro Paranal in Chile, which allowed us to measure about 1,000 individual lines including numerous resolved Λ-doublet components between 560 and 1060 nm. As the quality of the currently available sets of OH Einstein-A coefficients is not sufficient for accurate population retrievals, we derived an improved set by a semi-empirical approach, which benefited from the measurement of multiple lines with the same upper level. The resulting populations indicate a clear bimodality for each vibrational level, which is characterised by a cold component indicating the ambient temperature at the OH layer heights and a hot non-LTE component dominating high rotational levels. Our promising two-population fits allowed us to constrain the non-LTE contributions to rotational temperatures based on lines with upper states with low rotational and fixed vibrational quantum number, which are widely used to estimate temperatures in the mesopause region. The bimodality is also clearly indicated by the different population changes depending on the effective altitude of the OH emission layer. Only the cold component significantly decreases with increasing altitude. Our results will be very useful for the challenging modelling of the OH thermalisation process.

How to cite: Noll, S., Winkler, H., Goussev, O., and Proxauf, B.: Properties of OH roto-vibrational level populations in the Earth's mesopause region, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-3169, https://doi.org/10.5194/egusphere-egu2020-3169, 2020

Displays

Display file