Mean and eddy kinetic energy of the Gulf Stream from multiyear underwater glider surveys
- Woods Hole Oceanographic Institution, Physical Oceanography, United States of America (rtodd@whoi.edu)
Subtropical western boundary currents play a key role in ocean energy storage and transport and are characterized by elevated mean and eddy kinetic energy. Due to a lack of spatially broad subsurface observations of velocity, most studies of kinetic energy in western boundary currents have relied on satellite-based estimates of surface geostrophic velocity. Since 2015, Spray autonomous underwater gliders have completed more than 175 crossings of the Gulf Stream distributed over more than 1,500 km in along-stream extent between between Miami, FL (~25°N) and Cape Cod, MA (~40°N). The observations include roughly 14,000 absolute ocean velocity profiles in the upper 1000 m. Novel three-dimensional estimates of mean and eddy kinetic energy are constructed along the western margin of the North Atlantic at 10-m vertical resolution. The horizontal and vertical distributions of mean and eddy kinetic energy are analyzed in light of existing independent estimates and theoretical expectations. Observation-based estimates of mean and eddy-kinetic energy such as these serve as important metrics for validation of global circulation models that must adequately represent western boundary currents.
How to cite: Todd, R. E.: Mean and eddy kinetic energy of the Gulf Stream from multiyear underwater glider surveys, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-3745, https://doi.org/10.5194/egusphere-egu2020-3745, 2020