EGU2020-3969
https://doi.org/10.5194/egusphere-egu2020-3969
EGU General Assembly 2020
© Author(s) 2020. This work is distributed under
the Creative Commons Attribution 4.0 License.

CALIOP PSC observations from 2006-2019

Michael Pitts1 and Lamont Poole2
Michael Pitts and Lamont Poole
  • 1NASA Langley Research Center, Science Directorate, Hampton, United States of America (michael.c.pitts@nasa.gov)
  • 2Science Systems and Applications, Inc., Hampton, United States of America

Even though the role of polar stratospheric clouds (PSCs) in stratospheric ozone depletion is well established, important questions remain unanswered that have limited our understanding of PSC processes and how to accurately represent them in global models.  This has called into question our prognostic capabilities for future ozone loss in a changing climate.  A more complete picture of PSC processes on polar vortex-wide scales has emerged from the CALIOP (Cloud-Aerosol Lidar with Orthogonal Polarization) instrument on the CALIPSO (Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observations) satellite that has been observing PSCs at latitudes up to 82 degrees in both hemispheres since June 2006.  In this paper, we present a state-of-the-art climatology of PSC spatial and temporal distributions and particle composition constructed from the more than 14-year CALIOP spaceborne lidar dataset.  The climatology also includes estimates of particulate surface area density and volume density to facilitate comparisons with in situ data and measurements by other remote sensors, as well as with theoretical models relating PSCs to heterogeneous chemical processing and ozone loss. Finally, we compare the CALIOP PSC data record with the 1979-1989 SAM II (Stratospheric Aerosol Measurement II) solar occultation PSC record to investigate possible multi-decadal changes in PSC occurrence.

How to cite: Pitts, M. and Poole, L.: CALIOP PSC observations from 2006-2019, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-3969, https://doi.org/10.5194/egusphere-egu2020-3969, 2020

Displays

Display file