EGU2020-4082
https://doi.org/10.5194/egusphere-egu2020-4082
EGU General Assembly 2020
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.

Constraining the olivine amount and water content at 410-km discontinuity with the elasticity of wadsleyite and olivine

Zhongqing Wu1, Wenzhong Wang1, Michael Walter2, Peng Ye1, and Simmon Redfern3
Zhongqing Wu et al.
  • 1Laboratory of Seismology and Physics of Earth’s Interior, School of Earth and Space Sciences, University of Science and Technology of China, Hefei, Anhui 230026,
  • 2Geophysical Laboratory, Carnegie Institution for Science, Washington, DC 20015, USA
  • 3Department of Earth Science, University of Cambridge, Downing Street, Cambridge CB2 3EQ, UK

The water content in the mantle transition zone exerts a controlling influence on the dynamical and chemical evolution of Earth, but is poorly known. In principle the water content at the top of the transition zone can be inferred by comparing the velocity and density contrasts across the 410-km seismic discontinuity with predictions based on the phase transition of olivine to wadsleyite. The high-quality elastic data of at pressure and temperature (PT) conditions of the transition zone are crucial but are very challenge for experiments to obtain. Calculating these elastic data at high PT conditions in conventional method are also very expensive. Instead, these elastic data were calculated using the method of Wu and Wentzcovitch (2011), which reduces the computational workload to tenth of the conventional method. All calculations for two phases were conducted using the same computational details as far as possible, which guarantees that the velocity and density differences between two phases have very high precise. All these calculated elastic data agree well with the available experimental data. The iron and water effect on the elasticity are also well described.

With these high-quality elastic data covered the PT condition of the transition zone, we analyze the water and wadsleyite content at the top of the transition zone. We found that the water content of wadsleyite at the top of the transition zone can be well constrained when density and velocities jumps are considered together. For a pyrolitic mantle composition with ~60% olivine, our best fit is ~ 0.5 wt% water at the top of the transition zone. If the transition zone is dry, as suggested by some electrical conductivity models, the upper mantle may only contain ~ 50% olivine (Wang et al., 2019).

 

Wang, W-Z., Walter, M.J., Peng, Y., Redfern, S., Wu, Z-Q., 2019a. Constraining olivine abundance and water content of the mantle at the 410-km discontinuity from the elasticity of olivine and wadsleyite. Earth Planet. Sci. Lett. 519, 1–11.

Wu, Z-Q., Wentzcovitch, R.M., 2011. Quasiharmonic thermal elasticity of crystals: An analytical approach. Phys. Rev. B - Condens. Matter Mater. Phys. 83, 1–8. doi:10.1103/PhysRevB.83.184115

 

How to cite: Wu, Z., Wang, W., Walter, M., Ye, P., and Redfern, S.: Constraining the olivine amount and water content at 410-km discontinuity with the elasticity of wadsleyite and olivine, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-4082, https://doi.org/10.5194/egusphere-egu2020-4082, 2020.

Displays

Display file