EGU2020-4377
https://doi.org/10.5194/egusphere-egu2020-4377
EGU General Assembly 2020
© Author(s) 2020. This work is distributed under
the Creative Commons Attribution 4.0 License.

The evolution trend of geological disasters over spatial and temporal in the context of global warming —— taking the Qinghai-Tibet Plateau as an example

Yiru Jia
Yiru Jia
  • Academy of Disaster Reduction and Emergency Management, Faculty of Geographical Science,Beijing Normal University , Beijing, China (201821051169@mail.bnu.edu.cn)

The Tibetan plateau (QTP) has the highest average elevation in the world. As the third pole in the world, it has the largest cryosphere system at low and mid latitudes. It is a sensitive area of climate change, and the climate change is more significant. Global climate change has led to higher temperatures and increased rainfall on the Tibetan Plateau. This will lead to changes in the frequency and pattern of geological disasters. This spatiotemporal change and its influencing factors are not clear, so we collected a total of 898 geological disasters in the QTP from 1905 to 2015. Then we process the data to obtain various meteorological indicators of the QTP and combine them with the changes in the distribution of disaster points. Furthermore, the distribution pattern of the disaster points with the spatiotemporal changes of slope, altitude, precipitation and temperature is obtained. Statistics on the disaster data corresponding to each meteorological index are then made. Through the analysis of the distribution map and the statistical results of the data, the correlation between the occurrence of geological disasters and each element is obtained. The disaster points are superimposed with multiple influencing factors, and the influence of multiple factors on the distribution of geological hazards is discussed. The results showed that geological disasters have gradually expanded from the traditional high-incidence area of southern and eastern edges to the interior. The frequency of disasters in high altitude areas is increasing, and gradually extended from the rainy season to the non-rainy season.

How to cite: Jia, Y.: The evolution trend of geological disasters over spatial and temporal in the context of global warming —— taking the Qinghai-Tibet Plateau as an example , EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-4377, https://doi.org/10.5194/egusphere-egu2020-4377, 2020

This abstract will not be presented.