EGU2020-4672
https://doi.org/10.5194/egusphere-egu2020-4672
EGU General Assembly 2020
© Author(s) 2020. This work is distributed under
the Creative Commons Attribution 4.0 License.

Using geogenic radon potential to assess designation of radon priority areas in Ireland

Meabh Hughes1 and Quentin Crowley1,2
Meabh Hughes and Quentin Crowley
  • 1Natural Sciences , Trinity College Dublin, Educational, Ireland (mhughes5@tcd.ie)
  • 2Centre for the Environment, Trinity College, Dublin, Ireland

Radon is a radioactive gas which emanates from rock, soil and water. Radon concentrations in the
atmosphere are generally very low (typically <5 Bq m-3), however it can occur at much higher levels
in soil (typically 10’s-100’s kBq m-3), or enclosed spaces such as buildings and caves (typically 10’s-
100’s Bq m-3). Exposure to radon and its daughter products is associated with an elevated risk of
developing lung cancer. Ireland has a population weighted indoor radon concentration of 98 Bq m-3
resulting in an estimated 300 annual lung cancer cases per year, representing approximately 12% of
the annual lung cancer cases. A national-scale legislative radon-risk map has a 10 x 10 km spatial
resolution and is based exclusively on indoor radon measurements (i.e. it does not contain any
geological information). The legislative map satisfies the European Council Directive
2013/59/EURATOM Basic Safety Standard, in that it defines “high radon” areas as those where >10%
of homes are estimated to exceed the national reference level of 200 Bq m-3. New buildings in such
areas are legally required to have a barrier, with low radon permeability installed.

This research focuses on a karstic region of SE Ireland, which features some exceptionally high
indoor radon concentrations (65,000 Bq m-3), even though it is not classified as a “high radon” area
on the national legislative map. Here we demonstrate the use of measuring sub-soil radon
concentrations and sub-soil permeability, in order to construct a radon potential (RP) map of the
area. Extremely high sub-soil radon concentrations (>1443 kBqm-3) and radon potential values
(>200) are spatially associated with Namurian shales, interbedded with limestone. Overall, we
classify the study area as high radon potential (RP >35) using this technique. We suggest all areas
underlain by Namurian shales in Ireland should undergo similar radon potential mapping, and if
necessary, should be re-designated as “high radon” areas. If deemed appropriate (i.e. where RP
>35), such a designation will help to protect the general public from the harmful effects of indoor
radon exposure, and will help to lower the incidence of radon-related lung cancer in these areas.

How to cite: Hughes, M. and Crowley, Q.: Using geogenic radon potential to assess designation of radon priority areas in Ireland, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-4672, https://doi.org/10.5194/egusphere-egu2020-4672, 2020

Displays

Display file