EGU2020-5089
https://doi.org/10.5194/egusphere-egu2020-5089
EGU General Assembly 2020
© Author(s) 2023. This work is distributed under
the Creative Commons Attribution 4.0 License.

More than ten years of successful operation of the MARUM-MeBo sea bed drilling technology: Highlights of recent scientific drilling campaigns

Tim Freudenthal1, Gerhard Bohrmann1, Karsten Gohl2, Johann Philipp Klages2, Michael Riedel3, Klaus Wallmann3, and Gerold Wefer1
Tim Freudenthal et al.
  • 1University of Bremen, Marum Center for Marine Environmental Sciences, Bremen, Germany (freuden@marum.de)
  • 2Alfred-Wegener-Institut Helmholtz-Zentrum für Polar- und Meeresforschung, Bremerhaven, Germany
  • 3GEOMAR Helmholtz-Zentrum für Ozeanforschung, Kiel, Germany

Over the last two decades sea bed drilling technology has proven to provide a valuable complement to the services of classical drill ships. Especially for shallow drillings up to 200 mbsf and when working in remote areas difficult to access, sea bed drill rigs are a cost-effective alternative. Recent developments especially concerning borehole logging techniques add to the capabilities of sea bed drilling technology.

The MARUM-MeBo is a robotic drilling system that is developed since 2004 at the MARUM Center for Marine Environmental Sciences at the University of Bremen (Freudenthal and Wefer, 2013). The drill rig is deployed on the sea bed and remotely controlled from the vessel. It is used for core drilling in soft sediments as well as hard rocks in the deep sea. Especially since an upgrade in 2007/2008 for the use of wireline drilling technique, the first-generation drill rig MARUM-MeBo70 with a drilling capacity of about 70 m was successfully deployed on more than 15 research expeditions. Since 2014 the second-generation drill rig MARUM-MeBo200 with an increased drilling capacity of up to 200 m below sea floor is successfully in operation.

In this presentation we focus on results of three recent drilling campaigns, exemplifying the exploitation of the potential of the sea bed drilling technology:

References:

Freudenthal, T and Wefer, G (2013) Geoscientific Instrumentation, Methods and Data Systems, 2(2). 329-337. doi:10.5194/gi-2-329-2013

Gohl, K, et al. (2017) Geochemistry, Geophysics, Geosystems, 18, 4235–4250. https://doi.org/10.1002/2017GC007081

Klages, JP et al. (in press) Nature, 2019-10-14805B

Riedel, M et al. (2018) Geochemistry, Geophysics, Geosystems, 19, 1165–1177. doi:10.1002/2017GC007288

Riedel, M et al. (in press) Marine and Petroleum Geology, doi.org/10.1016/j.marpetgeo.2019.104192

Wallmann, K et al. (2018) Nature Communications, 9:83, DOI: 10.1038/s41467-017-02550-9

 

How to cite: Freudenthal, T., Bohrmann, G., Gohl, K., Klages, J. P., Riedel, M., Wallmann, K., and Wefer, G.: More than ten years of successful operation of the MARUM-MeBo sea bed drilling technology: Highlights of recent scientific drilling campaigns, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-5089, https://doi.org/10.5194/egusphere-egu2020-5089, 2020.

Displays

Display file