EGU2020-5640
https://doi.org/10.5194/egusphere-egu2020-5640
EGU General Assembly 2020
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.

Late Pleistocene Palaeohydrology of the Moksha River (the Volga Basin)

Ekaterina Matlakhova1, Andrei Panin1,2, and Vadim Ukraintsev2
Ekaterina Matlakhova et al.
  • 1Lomonosov Moscow State University, Faculty of Geography, Department of Geomorphology and Paleogeography, Moscow, Russian Federation (matlakhova_k@mail.ru)
  • 2Institute of Geography, Russian Academy of Sciences, Moscow, Russian Federation

The Moksha River valley was studied in its lower part between the Tsna River confluence and the mouth of the Moksha River. Wide floodplain and two levels of terraces are presented on the studied part of the valley. The height of the floodplain is from 1 to 6 m, of the first terrace – about 9-11 m, of the second terrace – 18-22 m. The width of the valley in this area is about 14-16 km, but sometimes it can reach 20-22 km and more. The width of the floodplain is about 12-14 km.

The Moksha River is a meandering channel. Large and small (modern-size) meandering palaeochannels spread widely on the floodplain surface. These palaeochannels were the main objects of our study. Small palaeochannels have the same parameters as the modern river channel: their width is about 100-150 m, wavelength is between 300-400 and 600-700 m. For the large palaeochannels (macromeanders) the mean parameters are the following: width is about 250-300 m, wavelength is about 1500-2000 m. These large palaeochannels are the signs of high flood activity epoch(s).

In our study we used a number of field and laboratory methods. Twelve boreholes in large and small palaeochannels were made during fieldwork in August-September 2019. Organic material from studied palaeochennels was sampled to make radiocarbon (AMS) dating to find the time of palaeochannels’ formation and infilling. Also we made the reconstructions of paleo-discharges of the Moksha River based on paleochannels’ parameters.

We studied both large and small palaeochannels to reconstruct palaeohydrology and history of the Moksha River valley development in Late Pleistocene. Large palaeochannels correspond to the time of high river runoff. The oldest ones of small palaeochannels were studied to know the time of lowering of the river runoff. Presumably, large palaeochannels were formed at the end of Late Glacial (after LGM) when river runoff was much higher than the modern one. This period of extremely high runoff was previously distinguished in many river valleys of East European Plain, where formation of large paleochannels is usually associated with Late Glacial (the end of MIS 2). Lowering of runoff on the central part of the East European Plain is usually associated with the beginning of the Holocene.

This study is supported by Russian Science Foundation (Project № 19-17-00215).

How to cite: Matlakhova, E., Panin, A., and Ukraintsev, V.: Late Pleistocene Palaeohydrology of the Moksha River (the Volga Basin), EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-5640, https://doi.org/10.5194/egusphere-egu2020-5640, 2020.

Displays

Display file