EGU2020-6076
https://doi.org/10.5194/egusphere-egu2020-6076
EGU General Assembly 2020
© Author(s) 2020. This work is distributed under
the Creative Commons Attribution 4.0 License.

Causality and Evolution of Summer Polynyas off the Coast of Northern Greenland

Younjoo Lee1, Wieslaw Maslowski1, Robert Osinski2, Jaclyn Clement Kinney1, Anthony Craig1, John Cassano3, Bart Nijssen4, and Mark Seefeldt3
Younjoo Lee et al.
  • 1Naval Postgraduate School, Monterey, California, USA
  • 2Institute of Oceanology of the Polish Academy of Sciences, Sopot, Poland
  • 3University of Colorado, Boulder, Colorado, USA
  • 4University of Washington, Seattle, Washington, USA

The summer polynya along the northern coast of Greenland has been observed only six months later after the winter polynya in 2018, which has prompted concerns about the stability of some of the thickest sea-ice in the Arctic region. This study combines retrospective remotely sensed sea-ice measurements with results from the Regional Arctic System Model (RASM) to examine the causes, effect, and evolution of open-water areas/polynyas in the region.

RASM is a limited-domain, fully-coupled climate model, consisting of the atmosphere (Weather Research and Forecasting, WRF3.7), ocean (Los Alamos National Laboratory Parallel Ocean Program, POP2), sea-ice (Community Sea Ice Model, CICE5), land hydrology (Variable Infiltration Capacity, VIC4) and streamflow routing (RVIC) components. The ocean and sea-ice models are configured with the horizontal resolution of 1/12-degree with 45 vertical levels and 5 sea-ice thickness categories, respectively. The atmosphere and land hydrology components are set up on a 50-km grid with 40-vertical levels and 3-soil layers, respectively. The Climate Forecast System Reanalysis (CFSR) and version 2 (CFSv2) output are used as boundary conditions for dynamic downscaling.

Analysis of the sea-ice conditions off the coast of northern Greenland revealed that RASM, in agreement with satellite measurements, has simulated five summer polynya events, i.e. in August of 1984, 1985, 2002, 2004 and 2018, over the 39-year period (1980-2018). All these events were primarily dynamically forced, with the thermodynamic forcing playing the secondary, yet still important role. While the thermodynamically driven sea-ice melting exhibited a relatively little year-to-year variability, between 87 km3 and 115 km3, its relative contribution to the total sea-ice loss increased by 2.5 times, from 16% in 1984 to 40% in 2018. This implies that with continuing thinning of sea-ice, increasingly less mechanical forcing may be required to generate and maintain a polynya or open water north of Greenland in summers to come.  

How to cite: Lee, Y., Maslowski, W., Osinski, R., Clement Kinney, J., Craig, A., Cassano, J., Nijssen, B., and Seefeldt, M.: Causality and Evolution of Summer Polynyas off the Coast of Northern Greenland, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-6076, https://doi.org/10.5194/egusphere-egu2020-6076, 2020

Displays

Display file