EGU2020-6500
https://doi.org/10.5194/egusphere-egu2020-6500
EGU General Assembly 2020
© Author(s) 2020. This work is distributed under
the Creative Commons Attribution 4.0 License.

Oxygen and Carbon Isotopes of Cold-water Corals——Reconstructing Paleotemperature changes and Calcification Mechanism

Le Kong
Le Kong
  • Tongji University, School of Ocean and Earth Science, Ocean Science, China (1831715@tongji.edu.cn)

         Cold-water corals represent an intriguing paleoceanographic archive with a great potential to reconstruct high-resolution paleoenvironmental changes. Compared to those of shallow-water corals, proxies derived from cold-water corals have been complicated by biologically mediated vital effects. The oxygen and carbon stable isotope compositions of cold-water coral skeletons are more depleted than the expected carbonate-seawater equilibrium values by ~4–6‰ and ~10‰, respectively. Therefore, it is necessary to correct for the vital effect before using δ18O as a temperature proxy. δ18O and δ13C of cold-water corals exhibit strong linear correlations after adjusting for ambient seawater δ18O and δ13C values. The δ18O intercepts of this linear regression were found to be correlated with water temperatures. This so-called ‘intercept method’ can therefore be used to reconstruct temperatures variations of intermediate and deep oceans. Moreover, sampling along the growing bands of cold-water corals can provide samples to generate temperature sequences. After that, three geochemical models have been proposed to explain the δ18O and δ13C depletion of cold-water corals. However, none of them can explain the behavior of all geochemical parameters. In future, more analyses and experiments at micro-scales are required to adjust these geochemical models or propose new ones.

How to cite: Kong, L.: Oxygen and Carbon Isotopes of Cold-water Corals——Reconstructing Paleotemperature changes and Calcification Mechanism, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-6500, https://doi.org/10.5194/egusphere-egu2020-6500, 2020