EGU2020-6560
https://doi.org/10.5194/egusphere-egu2020-6560
EGU General Assembly 2020
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.

Estimation of active layer thickness from modeling and InSAR deformation data at QTP

Rongxing Li, Tong Hao, Ping Lu, Gang Qiao, Lemin Chen, Jiangping Han, and Zhenshi Zhenshi Li
Rongxing Li et al.
  • Center for Spatial Information Science and Sustainable Development,Tongji University,Shanghai,China

In context of global warming, permafrost, as an important component of cryosphere in the Qinghai-Tibetan Plateau (QTP) that is located in middle and low latitudes with a high radiation intensity of high Asia mountains, is particularly sensitive to climate changes. The active layer thickness (ALT) in a permafrost area is an important index to indicate its stability. Traditional methods for measuring ALT in QTP mainly rely on ground-based field surveys and accordingly are extremely time- consuming and labor-intensive. The field works provide a good quality of data at a single site, however, such measurements are limited in spatial coverage and difficult for multi-temporal acquisitions. In addition, the harsh environment in QTP is not suitable for large-scale field measurements. In this study, the ALT of permafrost in QTP is estimated using modelling and remote sensing data. Particularly, the surface deformation on permafrost, as detected by the long-term InSAR technique, is considered as an input to the inversion model of ALT. The time-series deformation results over an experimental permafrost area were obtained by the SBAS-InSAR technique. Then, combined with the soil characteristics of soil moisture and soil thermal conductivity in the Stefan model, the melting thickness was estimated. Finally, the resulting ALT was tested and verified against a set of in-situ borehole measurements of depth-temperature.

How to cite: Li, R., Hao, T., Lu, P., Qiao, G., Chen, L., Han, J., and Zhenshi Li, Z.: Estimation of active layer thickness from modeling and InSAR deformation data at QTP, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-6560, https://doi.org/10.5194/egusphere-egu2020-6560, 2020.