The effects of living roots and arbuscular mycorrhiza fungi (AMF) on soil N2O emissions
- Peking University, College of Urban and Environmental Sciences, Institute of Ecology, China (shenyawen@pku.edu.cn)
Living roots and arbuscular mycorrhiza fungi (AMF) are widespread in most terrestrial ecosystems and play an important role in ecosystem nitrogen (N) cycling. However, the influence of living roots and AMF on soil N2O emissions remains poorly understood. In this study, we conducted a pot experiment with ryegrass (Lolium perenne) growing in a greenhouse for three months with three factors: root and AMF presence (None or unplanted, Root or with roots, and Root+AMF or with roots colonized by AMF), two N addition levels (N0 and N1 with 0 and 50 mg N kg-1 soil) and two P addition levels (P0 and P1, with 0 and 20 mg P kg-1 soil).
Our results showed that N addition didn’t have significant effect on N2O emission, however, we detected significant effects of Root and Root+AMF, particularly under P addition. Though the colonization of AMF didn’t significantly influence N2O emission, the presence of roots (Root and AMF+Root treatments) deceased N2O emission by 58%-67% compared with the None treatment. P addition increased (+134%) N2O emission from unplanted soil but decreased (74%-98%) N2O emission under planted soil regardless of AMF colonization. Moreover, there were no significant relationship between N2O emission and soil pH, NH4+-N and net N mineralization. The lower N2O emission from rooted treatments were mainly due to the lower soil NO3--N (and MBN) content which might be immobilized by plant biomass, while the higher N2O emission from unplanted soil under P addition was attributed to increased soil available (r=0.760, P<0.01) and total (r=0.654, P<0.01) phosphorus content. We conclude that root presence and P addition played an important role in regulating N2O emission from P-limited soils.
How to cite: Shen, Y., Xu, T., and Zhu, B.: The effects of living roots and arbuscular mycorrhiza fungi (AMF) on soil N2O emissions, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-6822, https://doi.org/10.5194/egusphere-egu2020-6822, 2020