EGU2020-7192
https://doi.org/10.5194/egusphere-egu2020-7192
EGU General Assembly 2020
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.

Signature of coseismic slip in unconsolidated Quaternary gravels, Campo Imperatore, Italy

Matteo Demurtas1, Fabrizio Balsamo2, and Mattia Pizzati2
Matteo Demurtas et al.
  • 1Physics of Geological Processes, The Njord Centre, Department of Geosciences, University of Oslo, Oslo, Norway (matteo.demurtas@geo.uio.no)
  • 2NEXT, Natural and Experimental Tectonics Research Group, Department of Chemistry, Life Sciences, and Environmental Sustainability, University of Parma, Parma, Italy

Faulting in seismically active regions commonly involves the deformation of unconsolidated to poorly lithified sediments. The seldom occurrence of seismic slip within these deposits appears to be counterintuitive if compared to classic crustal strength profiles that predict a velocity-strengthening behaviour for the first few km of depth. Therefore, the investigation of geological evidence for coseismic faulting within unconsolidated deposits is a key step towards a broader understanding of mechanisms of strain accommodation at shallow to near-surface depth.

Here we document the occurrence of minor faults within an unconsolidated colluvial fan at the hanging wall of the Vado di Corno Fault Zone (VCFZ) in the Central Apennines, Italy. The VCFZ is part of the active Campo Imperatore Fault System and accommodated 1-2 km of displacement since Early-Pleistocene. The deposits lie in direct contact with the master fault surface, are Late-Pleistocene to Holocene in age, and consist of angular carbonatic clasts, up to tens of centimetres in size, derived from the dismantling of the VCFZ footwall.

Studied faults are organised in two main sets: (i) subvertical, N-S trending dip-slip faults, parallel to the fan long axis, and (ii) WNW-ESE striking faults, synthetic and antithetic to the VCFZ master fault surface (N195/55°). Both fault sets are striated and commonly have positive relief with respect to the host deposits. Some of these faults show a fault core up to 5-6 cm thick, bounded by discrete and well-developed polished surfaces. Locally, particularly in fine-grained gravel levels, the occurrence of extreme strain localisation (i.e. millimetric ultracataclastic layers with truncated clasts) along mirror-like fault surfaces is observed. Grain size analysis of undeformed and faulted gravels shows an increase of the power-law exponent (fractal dimension) from values of D = 1.65-2.2 in the undeformed host rocks up to D = 2.9 in the cataclastic slip zones. Microstructural analysis suggests cataclasis is the main deformation mechanism leading to grain size reduction along faults, whereas intergranular pressure solution becomes widespread moving away from the slip zone where fluid circulation was present.

Collectively, our observations provide new insights into the mechanics of faulting and strain accommodation in the shallowest part of the crust (< 1 km) and new evidence to understand the propagation of seismic ruptures within shallow unconsolidated deposits.

How to cite: Demurtas, M., Balsamo, F., and Pizzati, M.: Signature of coseismic slip in unconsolidated Quaternary gravels, Campo Imperatore, Italy, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-7192, https://doi.org/10.5194/egusphere-egu2020-7192, 2020

Displays

Display file