EGU2020-7521
https://doi.org/10.5194/egusphere-egu2020-7521
EGU General Assembly 2020
© Author(s) 2020. This work is distributed under
the Creative Commons Attribution 4.0 License.

Changes in the Past and Projected Western North Pacific Tropical Cyclone Activity in a Warmed Climate

Liang Wu
Liang Wu
  • Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing, China (wul@mail.iap.ac.cn)

Two high-resolution climate models (the HiRAM and MRI-AGCM3.2) are used to simulate present-day western North Pacific (WNP) tropical cyclone (TC) activity and investigate the projected changes for the late 21st century. Compared toobservations, the models are able to realistically simulate many basic features of the WNP TC activity climatology. Future projections with the coupled model inter-comparison project phase 5 (CMIP5) under Representative Concentration Pathway (RCP) 8.5 scenario show a tendency for decreases in the number of WNP TCs, and of increases in the more intense TCs. It is unknown to what cause this inverse variation with number and intensity should be generally linked to similar large-scale environmental conditions. To examine the WNP TC genesis and intensity with environmental variables, we show that most of the current trend of decreasing genesis of TCs can be attributed to weakened dynamic environments and the current trend of increasing intensity of TCs might be linked to increased thermodynamic environments. Thus, the future climate warms under RCP 8.5 will likely lead to strong reductions in TC genesis frequency over the WNP, with project decreases of 36-63% by the end of the twenty-first century, but lead to greater TC intensities with rapid development of thermodynamic environments.

How to cite: Wu, L.: Changes in the Past and Projected Western North Pacific Tropical Cyclone Activity in a Warmed Climate, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-7521, https://doi.org/10.5194/egusphere-egu2020-7521, 2020