Synthetic rainfall for Germany based on simulations from two stochastic models
- 1University of Hannover, Inst. of Hydrology and Water Resources Management, Hannover, Germany (haberlandt@iww.uni-hannover.de)
- 2University of Stuttgart, Institute for Modelling Hydraulic and Environmental Systems, Germany
- 3Dr.-Ing. Pecher und Partner Ingenieurgesellschaft Ltd., Berlin, Germany
- 4Institute for Technical and Scientific Hydrology Ltd., Hannover, Germany
- 5Hamburg Wasser, Hamburg, Germany
For planning of urban drainage systems using hydrological models, long, continuous precipi-tation series with high temporal resolution are needed. Since observed time series are often too short or not available everywhere, the use of synthetic precipitation is a common alternative.
This contribution discusses the results of a research project, providing 5-minutes continuous stochastic point rainfall data for entire Germany for urban hydrological applications. Two different stochastic rainfall models are employed: a parametric stochastic model based on Alternating-Renewal processes and a non-parametric approach based on Resampling. Using rainfall observations from about 800 stations in Germany, the parameters of the models are regionalized. Rainfall and discharge characteristics are utilised for the evaluation of the model performance using a subset of 45 stations.
The results show, that stochastic rainfall from either of the models is better suited for urban hydrologic design, compared to the common practice scenario, where data from the nearest precipitation station is used. Notably, it could be shown that a mixture of generated rainfall from both models leads to a compensation of errors and further improves results, contrasted with using only data from one single model.
How to cite: Haberlandt, U., Bárdossy, A., Birkholz, P., Eisele, M., Fangmann, A., Fuchs, L., Herrmann, O.-C., Kuchenbecker, A., Maßmann, S., Morales, B., Müller, T., Seidel, J., and Sympher, K.: Synthetic rainfall for Germany based on simulations from two stochastic models, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-7566, https://doi.org/10.5194/egusphere-egu2020-7566, 2020
This abstract will not be presented.