EGU2020-7639
https://doi.org/10.5194/egusphere-egu2020-7639
EGU General Assembly 2020
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.

Spatiotemporal Changes in Headwater Flow Contributions to Major Rivers of Germany under Changing Climate

Akash Koppa1, Thomas Remke2, Stephan Thober1, Oldrich Rakovec1, Sebastian Müller1, Andreas Marx1, and Luis Samaniego1
Akash Koppa et al.
  • 1Department of Computational Hydrosystems, Helmholtz Center for Environmental Research (UFZ), Leipzig, Germany
  • 2Climate Service Center Germany (GERICS), Helmholtz-Zentrum Geesthacht, Hamburg, Germany

Headwater systems are a major source of water, sediments, and nutrients (including nitrogen and carbon di-oxide) for downstream aquatic, riparian, and inland ecosystems. As precipitation changes are expected to exhibit considerable spatial variability in the future, we hypothesize that headwater contribution to major rivers will also change significantly. Quantifying these changes is essential for developing effective adaptation and mitigation strategies against climate change. However, the lack of hydrologic projections at high resolutions over large domains have hindered attempts to quantify climate change impacts on headwater systems.

Here, we overcome this challenge by developing an ensemble of hydrologic projections at an unprecedented resolution (1km) for Germany. These high resolution projections are developed within the framework of the Helmholtz Climate Initiative (https://www.helmholtz.de/en/current-topics/the-initiative/climate-research/). Our modeling chain consists of the following four components:

Climate Modeling: We statistically downscale and bias-adjust climate change scenarios from three representative concentration pathway (RCP) scenarios derived from the EURO-CORDEX ensemble - 2.6, 4.5, and 8.5 to a horizontal resolution of 1km over Germany (i.e, a total of 75 ensemble members). The EURO-CORDEX ensemble is generated by dynamically downscaling CMIP-5 general circulation models (GCM) using regional climate models (RCMs). Hydrologic Modeling: To account for model structure uncertainty, the climate model projections are used as forcings for three spatially distributed hydrologic models - a) the mesocale Hydrologic model (mHM), b) Noah-MP, and c) HTESSEL. The outputs that will be generated in the study are soil moisture, evapotranspiration, snow water equivalent, and runoff. Streamflow Routing: To minimize uncertainty from river routing schemes, we use the multiscale routing model (mRM v1.0) to route runoff from all the three models. River Temperature Modeling: A novel river temperature model is used to quantify the changes in river temperature due to anthropogenic warming.

The 225-member ensemble streamflow outputs (75 climate model members and 3 hydrologic models) are used to quantify the changes in the contribution of headwater watersheds to all the major rivers in Germany. Finally, we analyze changes in soil moisture, snow melt, and river temperature and their implications for headwater contributions. Previously, a high-resolution (5km) multi-model ensemble for climate change projections has been created within the EDgE project1,2,3,4. The newly created projections in this project will be compared against those created in the EDgE project.  The ensemble used in this project will profit from the higher resolution of the regional climate models that provide a more detailed land orography.

References

[1] Marx, A. et al. (2018). Climate change alters low flows in Europe under global warming of 1.5, 2, and 3 C. Hydrology and Earth System Sciences, 22(2), 1017-1032.

[2] Samaniego, L. et al. (2019). Hydrological forecasts and projections for improved decision-making in the water sector in Europe. Bulletin of the American Meteorological Society.

[3] Samaniego, L. and Thober, S., et al. (2018). Anthropogenic warming exacerbates European soil moisture droughts. Nature Climate Change, 8(5), 421.

[4] Thober, S. et al. (2018). Multi-model ensemble projections of European river floods and high flows at 1.5, 2, and 3 degrees global warming. Environmental Research Letters, 13(1), 014003.

 

 

 

How to cite: Koppa, A., Remke, T., Thober, S., Rakovec, O., Müller, S., Marx, A., and Samaniego, L.: Spatiotemporal Changes in Headwater Flow Contributions to Major Rivers of Germany under Changing Climate, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-7639, https://doi.org/10.5194/egusphere-egu2020-7639, 2020.

This abstract will not be presented.