EGU2020-7910, updated on 10 Jan 2023
https://doi.org/10.5194/egusphere-egu2020-7910
EGU General Assembly 2020
© Author(s) 2023. This work is distributed under
the Creative Commons Attribution 4.0 License.

Inter-laboratory calibration of a Ag3PO4 comparison material for oxygen stable isotope analysis

Andrea Watzinger1, Katharina Schott1, Rebecca Hood-Nowotny1, Grzegorz Skrzypek2, Federica Tamburini3, Laura Arppe4, Domiziana Cristini5, and Kay Knöller5
Andrea Watzinger et al.
  • 1University of Natural Resources and Life Sciences Vienna, Institute of Soil Research, Department of Forest- and Soil Sciences, Tulln, Austria (andrea.watzinger@boku.ac.at)
  • 2The University of Western Australia, School of Biological Sciences, West Australian Biogeochemistry Centre, Crawley, Australia (grzegorz.skrzypek@uwa.edu.au)
  • 3ETH Zurich, Institute of Agricultural Sciences, Group of Plant Nutrition, Lindau, Switzerland (federica.tamburini@usys.ethz.ch)
  • 4University of Helsinki, Finnish Museum of Natural History, Laboratory of Chronology, Finland (laura.arppe@helsinki.fi)
  • 5Department of Catchment Hydrology, Helmholtz Center for Environmental Research – UFZ, Halle, Germany (kay.knoeller@ufz.de)

A silver phosphate comparison material (Ag3PO4) for measurement of the stable oxygen isotope composition was prepared by the University of Natural Resources and Life Science (BOKU) and distributed to four international isotope laboratories frequently measuring the δ18O value in Ag3PO4. The contributing laboratories were the University of Natural Resources and Life Science (BOKU), The University of Western Australia (UWA), the ETH Zurich (ETH), the University of Helsinki (UH) and the Helmholtz Centre for Environmental Research (UFZ). Each laboratory analysed the comparison material in a minimum of two independent measuring rounds with a minimum of 10 individual measurements. The instrument used to perform the measurements were high-temperature conversion elemental analyzers coupled with continuous flow isotope ratio mass spectrometers: TC/EA with Thermo Finnigan Delta XP (BOKU), a TC/EA with a Thermo Scientific Delta V Plus (UWA), an Elementar Pyrocube with a Isoprime 100 (ETH), a Flash IRMS EA with a Thermo Scientific Delta V Plus (UH) and a TC/EA with a Finnigan Delta S (UFZ). The working gas δ18O was set to 0 ‰ and the normalization was done by a three-point linear regression calibration (Paul et al., 2007) using the reference material IAEA-601 (δ18OVSMOW = +23.14 ± 0.17 ‰), IAEA-602 (δ18OVSMOW = +71.28 ±0.42 ‰) (both benzoic acid) and NBS 127 (barium sulfate) (δ18OVSMOW = +8.59 ± 0.20 ‰) (Brand et al., 2009). BOKU, UH and ETH had experienced inhomogeneity of the IAEA-602 as already mentioned in Brand et al. (2009). The weighted arithmetic mean and standard deviation (1σ) of the new BOKU Ag3PO4 comparison material from the single measurements has a δ18O value of 13.80 ± 0.40 ‰ on the VSMOW scale (n=131), while the median of the single rounds was 13.76 ‰ (n=11) and the median of the laboratories was 13.79 ‰ (n=5). The arithmetic means of two measuring rounds were outside ± 1σ. When excluding data from these rounds from the statistics the weighted arithmetic mean has a δ18O value of 13.80 ± 0.32 ‰ on the VSMOW scale (n = 111) and the median of the single valid rounds (n=9) remained at 13.76 ‰ and the median of the labs at 13.79 ‰ (n=5). Excluding NBS127 from the normalization slightly reduced the δ18O value to 13.74 ± 0.31 ‰ (n = 111). The BOKU Ag3PO4 comparison material is available for stable isotope research laboratories to facilitate the calibration of their lab comparison material.

 

Brand, W.A., Coplen, T.B., Aerts-Bijma, A.T., Böhlke, J.K., Gehre, M., Geilmann, H., Gröning, M., Jansen, H.G., Meijer, H.A.J., Mroczkowski, S.J., Qi, H., Soergel, K., Stuart-Williams, H., Weise, S.M., Werner, R.A., 2009. Comprehensive inter-laboratory calibration of reference materials for δ18O versus VSMOW using various on-line high-temperature conversion techniques. Rapid Communications in Mass Spectrometry, 999–1009. doi:10.1002/rcm

Paul, D., Skrzypek, G., Fórizs, I., 2007. Normalization of measured stable isotopic compositions to isotope reference scales - A review. Rapid Communications in Mass Spectrometry 21, 3006–3014. doi:10.1002/rcm.3185

How to cite: Watzinger, A., Schott, K., Hood-Nowotny, R., Skrzypek, G., Tamburini, F., Arppe, L., Cristini, D., and Knöller, K.: Inter-laboratory calibration of a Ag3PO4 comparison material for oxygen stable isotope analysis, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-7910, https://doi.org/10.5194/egusphere-egu2020-7910, 2020.

Displays

Display file