EGU2020-8041
https://doi.org/10.5194/egusphere-egu2020-8041
EGU General Assembly 2020
© Author(s) 2020. This work is distributed under
the Creative Commons Attribution 4.0 License.

Probabilistic Tsunami Hazard Analysis: High Performance Computing for Massive Scale Monte Carlo type Inundation Simulations

Steven J. Gibbons1, Manuel J. Castro Díaz2, Sylfest Glimsdal1, Carl Bonnevie Harbitz1, Maria Concetta Lorenzino3, Stefano Lorito3, Finn Løvholt1, Massimo Nazaria3, Fabrizio Romano3, Jorge Macías Sánchez2, Jacopo Selva3, Roberto Tonini3, José Manuel González Vida2, Manuela Volpe3, and Malte Vöge1
Steven J. Gibbons et al.
  • 1The Norwegian Geotechnical Institute (NGI), Oslo, Norway (steven.gibbons@ngi.no)
  • 2Universidad de Málaga (UMA), Málaga, Spain
  • 3National Institute of Geophysics and Volcanology (INGV), Rome/Bologna, Italy

Probabilistic Tsunami Hazard Analysis (PTHA) is an approach to quantifying the likelihood of exceeding a specified metric of tsunami inundation at a given location within a given time interval. It provides scientific guidance for decision making regarding coastal engineering and evacuation planning. PTHA requires a discretization of many potential tsunami source scenarios and an evaluation of the probability of each scenario. The classical approach of PTHA has been the quantification of the tsunami hazard offshore, while estimates of the inundation at a given coastal site have been limited to a few scenarios. PTHA, with an adequate discretization of source scenarios, combined with high-resolution inundation modelling, has been out of reach with existing models and computing capabilities with tens to hundreds of thousands of moderately intensive numerical simulations being required. In recent years, more efficient GPU-based High Performance Computing (HPC) facilities, together with efficient GPU-optimized shallow water type models for simulating tsunami inundation, have made a regional and local long-term hazard assessment feasible. PTHA is one of the so-called Pilot Demonstrators of the EC-funded ChEESE project (Center of Excellence for Exascale Computing in the Solid Earth) where a workflow has been developed with three main stages: source specification and discretization, efficient numerical inundation simulation for each scenario using the HySEA numerical tsunami propagation model, and hazard aggregation. HySEA calculates tsunami offshore propagation and inundation using a system of telescopic topo-bathymetric grids. In this presentation, we illustrate the workflows of the PTHA as implemented for HPC applications, including preliminary simulations carried out on intermediate scale GPU clusters. Finally, we delineate how planned upscaling to exascale applications can significantly increase the accuracy of local tsunami hazard analysis.

This work is partially funded by the European Union’s Horizon 2020 Research and Innovation Program under grant agreement No 823844 (ChEESE Center of Excellence, www.cheese-coe.eu).

How to cite: Gibbons, S. J., Díaz, M. J. C., Glimsdal, S., Harbitz, C. B., Lorenzino, M. C., Lorito, S., Løvholt, F., Nazaria, M., Romano, F., Sánchez, J. M., Selva, J., Tonini, R., Vida, J. M. G., Volpe, M., and Vöge, M.: Probabilistic Tsunami Hazard Analysis: High Performance Computing for Massive Scale Monte Carlo type Inundation Simulations, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-8041, https://doi.org/10.5194/egusphere-egu2020-8041, 2020

Comments on the presentation

AC: Author Comment | CC: Community Comment | Report abuse

Presentation version 2 – uploaded on 05 May 2020 , no comments
Version description: Numbers on the last slide have been modified to reflect a small change in the ongoing project (an increase in the[...]
Presentation version 1 – uploaded on 30 Apr 2020 , no comments