EGU2020-8098
https://doi.org/10.5194/egusphere-egu2020-8098
EGU General Assembly 2020
© Author(s) 2020. This work is distributed under
the Creative Commons Attribution 4.0 License.

Mapping the dynamics of the Lagunas de Ruidera wetland (Spain) using remote sensing

Eulogio Pardo-Iguzquiza1, David Pulido-Velazquez2, Antonio-Juan Collados-Lara2, and Leticia Baena-Ruiz2
Eulogio Pardo-Iguzquiza et al.
  • 1Instituto Geológico y Minero de España, Ríos Rosas, 23, 28003 Madrid (Spain). e-mail: e.pardo@igme.es
  • 2Instituto Geológico y Minero de España, Urb. Alcázar del Genil, 4. Edificio Zulema Bajo, 18006, Granada (Spain). e-mails: d.pulido@igme.es; aj.collados@igme.es; l.baena@igme.es

Wetlands protect and improve water quality, store floods, maintain surface water during dry periods and provide valuable habitats for wildlife. However, wetlands may be very sensitive to climate change and appropriate monitoring works and modelling activities are needed in order to design sustainable management strategies. In this work we aim to analyze the dynamics of the Lagunas de Ruidera wetland (Spain) for the period 1984−2015. We applied the supervised classification method to LANDSAT satellite images (missions 5, 7 and 8) with a spatial resolution of 30 m and a temporal resolution of around 16 days. In this case study two different water bodies in terms of surface reflectance have been detected. Both zones have been considered for the calibration of the water detection algorithm through a non-steady threshold. We have also analysed daily surface reflectance data from MODIS (MOD09GQ) to complete the temporal dynamic of the wetland. We obtained some correlations between surface reflectance of LANDSAT and MODIS but the efficiency to detect water surfaces of the second is considerably lower due to its 250 m spatial resolution. The results show a minimum and a maximum wetland surface of around 2.7 and 6.3 km² for the considered period. We have also analysed the relationship of the wetland surface with precipitation and aquifer discharge (obtained from a groundwater flow model). For the mean year at monthly scale, the maximum correlation between the wetland surface and precipitation is obtained for a lag of one month. The wetland surface has a similar monthly trend to the aquifer discharge and the maximum correlation is obtained without lag.

This research has been partially supported by the SIGLO-AN project (RTI2018-101397-B-I00) from the Spanish Ministry of Science, Innovation and Universities (Programa Estatal de I+D+I orientada a los Retos de la Sociedad) and by the GeoE.171.008-TACTIC project from GeoERA organization funded by European Union’s Horizon 2020 research and innovation program.

How to cite: Pardo-Iguzquiza, E., Pulido-Velazquez, D., Collados-Lara, A.-J., and Baena-Ruiz, L.: Mapping the dynamics of the Lagunas de Ruidera wetland (Spain) using remote sensing, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-8098, https://doi.org/10.5194/egusphere-egu2020-8098, 2020

Displays

Display file