Assessment of different indices from Landsat time series in burned area mapping
- School of Information Engineering, China University of Geosciences (Beijing), Beijing, China (liujx0920@126.com)
Fire is recognized as an important land surface disturbance, as it influences terrestrial carbon cycle, climate and biodiversity. Accurate and efficient mapping of burned area is beneficial for social and environmental applications. Remote sensing plays a key role in detecting burned areas and active fires from reginal to global scales. Due to the free access to the Landsat archive, studies using dense time series of Landsat imagery for burned area mapping are appearing and increasing. However, the performance of Landsat time series when using different indices for burned area mapping has not been assessed. In this study, the objective was to identify which indices can detect burned area better when using Landsat time series in savanna area of southern Burkina Faso. We selected Burned Area Index (BAI), Normalized Burned Ratio (NBR), Normalized Difference Vegetation Index (NDVI), Global Environmental Monitoring Index (GEMI) for comparison as they are commonly used indices for burned area detection. The algorithm was based on breakpoint identification and burned pixel detection using harmonic model fitting with different indices Landsat time series. It was tested in savanna area in southern Burkina Faso over 16 years with 281 Landsat images ranging from October 2000 to April 2016.The same reference data was used to evaluate the performance of burned area detection with different indices Landsat time series. The result demonstrated that BAI was the most accurate in burned area detection from Landsat time series, followed by NBR, GEMI and NDVI.
How to cite: Liu, J.: Assessment of different indices from Landsat time series in burned area mapping , EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-8397, https://doi.org/10.5194/egusphere-egu2020-8397, 2020
This abstract will not be presented.