EGU2020-846
https://doi.org/10.5194/egusphere-egu2020-846
EGU General Assembly 2020
© Author(s) 2020. This work is distributed under
the Creative Commons Attribution 4.0 License.

Seasonal Variability of Mesoscale Instabilities in the Azores Current System

João Bettencourt and Carlos Guedes Soares
João Bettencourt and Carlos Guedes Soares
  • University of Lisbon, Instituto Superior Técnico, Centre for Marine Technology and Ocean Engineering, Lisboa, Portugal (joao.bettencourt@tecnico.ulisboa.pt)

The Azores Current-Front system coincides with the northern limit of the subtropical gyre in  the Eastern North Atlantic. The mean zonal jet is positioned south of the Azores archipelago  and extends from west of the mid-atlantic ridge to the Gulf of Cadiz, where it partially  turns south. North of the main jet, a sub-surface counter-current is found, flowing westwards. The associated thermal front separates the warm subtropical waters from the colder subpolar waters. The instantaneous flow in the Azores Current/Front system is characterized by the presence of meandering currents with length scales of 200 km that regularly shed anticyclonic warm water and cyclonic cold water eddies to the north and south of the mean jet axis, respectively, due to vortex stretching and the planetary beta effect. The time scale of eddy shedding is 100-200 days. On the meandering arms of the current, downwelling 
and upwelling cells are found and sharp thermal gradients are formed and a residual poleward heat transport is observed. The instability cycle that originates the mesoscale meanders and the eddies is well-known from quasi-geostrophic and primitive equation models initialized from a basic baroclinic state: a first phase of baroclinic instability feeds on available potential energy to raise eddy kinetic energy levels, that, in a second phase feed the mean kinetic energy by Reynolds stress convergence. The cycle repeats itself as long as the APE reservoir is filled at the end of each cycle.

However, seasonal variability of the zonal jet dynamics has not been addressed before and it can provide valuable insights in to the variations of the Eastern North Atlantic between the subtropical and subpolar gyres. We use a primitive equation regional ocean model of the Eastern Central North Atlantic with realistic climatological wind and thermal forcing to study the yearly cycle of meandering, eddy shedding and restoration of the mean jet in the Azores/Current system. We observe an semi-annual cycle in the jet's kinetic energy with maxima in Summer/Winter and minima in early Spring/Autumn. Potential energy conversion by baroclinic instability occurs throughout the year but is predominant in the first half of the year. The mean kinetic energy draws from the turbulent kinetic energy through Reynolds stress convergence in periods of 50 - 100 days, that are followed by short barotropic instability periods. During Winter, Reynolds stress convergence, and thus mean jet reinforcement from the mesoscale eddy field, occurs along the jet meridional extent, in the top 500 m of the water column, but from Spring to Autumn it is observed only in the southern flank of the mean jet axis.

How to cite: Bettencourt, J. and Guedes Soares, C.: Seasonal Variability of Mesoscale Instabilities in the Azores Current System, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-846, https://doi.org/10.5194/egusphere-egu2020-846, 2019