Reconciling plate convergence and orogeny: The influence of India-Asia convergence rate on the formation of the Himalayas
- School of Earth, Atmosphere and Environment, Monash University, Clayton, Victoria, Australia (ben.knight@monash.edu)
The collision of India and Eurasia since ~50 Ma has resulted in a broad range of deformation along the Himalaya-Tibetan orogeny, accommodating >2700 km of convergence. The region is characterised by the Tibetan Plateau, the Himalayan internal units and fold-and-thrust belt from North to South. These formed as a consequence of a convergence history characterised by a progressive decrease in velocity, from ~10 cm/yr 50 Ma, to ~8 cm/yr 42.5 Ma and to present-day values of ~4 cm/yr around 20 Ma. Here, we test the controls of such a convergence velocity history on the orogeny of a viscoplastic wedge during collision, above a subducting continental lithosphere. We compare numerical models simulating India-Asia plate convergence and collision, comparing the structures observed throughout the evolution with those observed in the Himalayan-Tibetan region. The models display distinct phases of growth and structural style evolution in the Himalayan-Tibetan region that are a result of the change in convergence velocity and long-term collision. After an initial stacking, the high convergence velocity forces deformation migration towards the upper plate, where a plateau forms, while late stage slowdown of collision favours the formation of the Himalayan fold-and-thrust belt. While the latter is in agreement with the structuring of the southermost domains and the South Tibetan Detachment (STD) fault, the former provide constraints to the initial uplift of the Tibetan Plateau.
How to cite: Knight, B. S., Capitanio, F. A., and Weinberg, R. F.: Reconciling plate convergence and orogeny: The influence of India-Asia convergence rate on the formation of the Himalayas, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-904, https://doi.org/10.5194/egusphere-egu2020-904, 2019