EGU2020-9881
https://doi.org/10.5194/egusphere-egu2020-9881
EGU General Assembly 2020
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.

On the identification of Electron Diffusion Regions at the magnetopause with an AI approach

Quentin Lenouvel1, Vincent Génot2, Philippe Garnier3, Sergio Toledo-Redondo4, Benoît Lavraud5, Roy Torbert6, Barbara Giles7, and Jim Burch8
Quentin Lenouvel et al.
  • 1Institut de Recherche en Astrophysique et Planétologie, Université de Toulouse (UPS), Toulouse, France (quentin.lenouvel@irap.omp.eu)
  • 2Institut de Recherche en Astrophysique et Planétologie, Université de Toulouse (UPS), Toulouse, France (vincent.genot@irap.omp.eu)
  • 3Institut de Recherche en Astrophysique et Planétologie, Université de Toulouse (UPS), Toulouse, France (philippe.garnier@irap.omp.eu)
  • 4University of Murcia, Murcia, Spain (sergio.toledo@um.es)
  • 5Institut de Recherche en Astrophysique et Planétologie, Université de Toulouse (UPS), Toulouse, France (benoit.lavraud@irap.omp.eu)
  • 6Institut for the study of Earth, Oceans, and Space, University of New Hampshire, Durham, NH, USA (Roy.Torbert@unh.edu)
  • 7NASA Goddard Space Flight Center, Greenbelt, MD, USA (barbara.giles@nasa.gov)
  • 8Southwest Research Institute, San Antonio, TX, USA (jburch@swri.edu)

MMS has already been producing a very large dataset with invaluable information about how the solar wind and the Earth's magnetosphere interact. However, it remains challenging to process all these new data and convert it into scientific knowledge, the ultimate goal of the mission. Data science and machine learning are nowadays a very powerful and successful technology that is employed to many applied and research fields. During this presentation, I shall discuss the tentative use of machine learning for the automatic detection and classification of plasma regions, relevant to the study of magnetic reconnection in the MMS data set, with a focus on the critical but poorly understood electron diffusion region (EDR) at the Earth's dayside magnetopause. We make use of the EDR database and the plasma regions nearby that has been identified by the MMS community and compiled by Webster et al. (2018) as well as the Magnetopause crossings database compiled by the ISSI team, to train a neural network using supervised training techniques. I shall present a list of new EDR candidates found during the phase 1 of MMS and do a case study of some of the strong candidates.

How to cite: Lenouvel, Q., Génot, V., Garnier, P., Toledo-Redondo, S., Lavraud, B., Torbert, R., Giles, B., and Burch, J.: On the identification of Electron Diffusion Regions at the magnetopause with an AI approach, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-9881, https://doi.org/10.5194/egusphere-egu2020-9881, 2020

Displays

Display file