Union-wide
Inter- and Transdisciplinary Sessions
Disciplinary sessions AS–GM
Disciplinary sessions GMPV–TS

Session programme

AS2

AS – Atmospheric Sciences

Programme group chair: Athanasios Nenes

AS2 – Boundary Layer Processes

Programme group scientific officer: Athanasios Nenes

AS2.1

Driven by atmospheric turbulence, and integrating surface processes to free atmospheric conditions, the Atmospheric Boundary Layer (ABL) plays a key role not only in weather and climate, but also in air quality and wind/solar energy. It is in this context that this session invites theoretical, numerical and observational studies ranging from fundamental aspects of atmospheric turbulence, to parameterizations of the boundary layer, and to renewable energy or air pollution applications. Below we propose a list of the topics included:

- Observational methods in the Atmospheric Boundary Layer
- Simulation and modelling of ABL: from turbulence to boundary layer schemes
- Stable Boundary Layers, gravity waves and intermittency
- Evening and morning transitions of the ABL
- Convective processes in the ABL
- Boundary Layer Clouds and turbulence-fog interactions
- Micro-Mesoscale interactions
- Micrometeorology in complex terrain
- Agricultural and Forest processes in the ABL
- Diffusion and transport of constituents in the ABL
- Turbulence and Air Quality applications
- Turbulence and Wind Energy applications

Solicited talk:
- "Observing the surface radiation and energy balance, carbon dioxide and methane fluxes over the city centre of Amsterdam", by Dr. Gert-Jan Steeneveld, Wageningen University, The Netherlands.

Share:
Convener: Carlos Yagüe | Co-conveners: Marc Calaf, Maria Antonia Jimenez Cortes
Displays
| Attendance Mon, 04 May, 14:00–18:00 (CEST)
AS2.2

Changes in the Arctic and Antarctic climate systems are strongly related to processes in the boundary layer and their feedbacks with the free troposphere, ocean and ice. An adequate understanding and quantification of these processes is necessary to improve predictions of future changes in the polar regions and their teleconnection with mid-latitude weather and climate, including meridional transport of heat, moisture and chemical constituents. Processes include atmosphere-ocean-ice (AOI) interactions, physical and chemical snow processes (e.g. snow photochemistry), exchange of chemical constituents including biogeochemical impacts , sources of aerosol, polynya formation processes, sea ice production and loss, and cloud formation, which represent key processes for the atmosphere, ocean and the cryosphere. AOI interactions are also triggered by and have feedbacks with synoptic systems and mesoscale weather phenomena such as cold air outbreaks, katabatic winds and polar lows. Associated processes also include the effect of extreme events such as warm air advection and clouds on the surface energy budget and related boundary layer exchanges. In addition, understanding natural processes including AOI interactions is essential to understand of the background atmosphere to quantify the anthropogenic impacts. Shallow inversions, mostly during winter-time, lead to high air pollutant concentrations. Even though severe air pollution episodes are frequently observed in the Arctic, knowledge on urban emission sources, transport and atmospheric chemical processing of pollution, especially under cold and dark conditions, are poorly understood. Similarly, the polar boundary layer can involve complicated radiative processes such as shallow stable layers with fog present. In addition, polar boundary layers can mediate chemical, aerosol, and isotope exchanges between the atmosphere and the firn important to the interpretation of ice core records.
This session is intended to provide an interdisciplinary forum to bring together researchers working in the area of boundary layer processes and high-latitude weather and climate (including snow physics, air/snow chemistry, and oceanography). Cryosphere and atmospheric chemistry processes (the focus of the IGAC/SOLAS activity “CATCH” and the IGAC/IASC activity “PACES”) are highly relevant to this session. We also encourage preliminary results from field programs such as MOSAiC and other high-latitude research efforts.

Share:
Co-organized by CL2/CR7/OS1
Convener: William Neff | Co-conveners: Jo Browse, Julia Schmale, Michael Tjernström, Gillian McCusker
Displays
| Attendance Mon, 04 May, 08:30–10:15 (CEST)
NP6.3

The multitude of processes of various scales occurring simultaneously under strong winds in the air and sea boundary layers presents a true challenge for nonlinear science. We want to understand the physics of these processes, their specific role, their interactions and how they can be probed remotely, how these processes differ from their counterparts under moderate/weak winds. We welcome theoretical, experimental and numerical works on all aspects of processes in turbulent boundary layers above and below the ocean surface. Although we are particularly interested in the processes and phenomena occurring under strong wind conditions, the works concerned with similar processes under weaker winds which might provide an insight for rough seas are also welcomed. We are also very interested in works on remote sensing of these processes.
The areas of interest include the processes at and in the vicinity of the interface (nonlinear dynamics of surface water, wave-turbulence interactions, wave breaking, generation and dynamics of spray and air bubbles, thermodynamics of the processes in the boundary layers, heat and gas exchange), all the processes above and below the aIr/water interface, as long as they are relevant for strong wind conditions (such as, e.g. inertial waves generated by changing winds). Relevant nonlinear biological phenomena are also welcomed.
The main aims of the session is to initiate discussion of the multitude of processes active under strong winds across the narrow specializations as a step towards creating an integrated picture. Theoretical, numerical, experimental and observational works are welcomed.

Geophysical Fluid Dynamics (GFD) is a truly interdisciplinary field, including different topics dealing with rotating stratified fluids. It emerges in the late 50s, when scientists from meteorology, oceanography, astrophysics, geological fluid dynamics, and applied mathematics began to mathematically model complex flows and thereby unify these fields. Since then many new aspects were added and deeper insight into many problems has been achieved. New mathematical and statistical tools were developed, standard techniques were refined, classical problems were varied. In this session we primarily focus on contributions from dynamic meteorology and physical oceanography that model flows by mathematical analysis. However, it is also a forum for experimental GFD and for astrophysical and geological aspects of GFD as well.

Share:
Co-organized by AS2/NH1/OS4
Convener: Yuliya Troitskaya | Co-conveners: Uwe Harlander, Vladimir Kudryavtsev, Victor Shrira, Wu-ting Tsai, Claudia Cherubini, Michael Kurgansky, Andreas Will
Displays
| Attendance Fri, 08 May, 10:45–12:30 (CEST), Attendance Fri, 08 May, 14:00–15:45 (CEST)
HS6.2

Land-atmospheric interaction includes the land surface and atmospheric states and the mass and energy exchanges between land surface and the atmosphere. It is a key part of the Earth's weather and climate system. Studies of the land-atmosphere interaction are critical to the understanding of the Earth’s weather and climate system that is required for accurate weather and climate forecasts. These studies mainly involve ground observations, air-borne or space based remote sensing of land surface and the lower atmosphere properties, mass and energy fluxes and their dynamics, and numerical model simulations of the land-atmosphere processes. Since the 1970s, a large number of field observation experiments (such as FIFE, HAPEX/Sahel, HAPEX/MOBILHY, EFEDA, BOREAS, NOPEX, GAME, HEIFE, TIPEX, EAGLE, CAMP/Tibet, TPE and LOPEXs) have been or are currently being carried out over a wide range of different underlying land surfaces worldwide. Dozens of land process parameterization schemes or land surface models have been developed and refined. Major national and international agencies (e.g. NASA, NOAA, ESA, EUMETSAT, JAXA, CMA, JMA, KMA, etc.) have launched many satellite missions to provide continuous spatially distributed observations of land surface and atmospheric observations from local scale to regional and even global scales. Examples of these missions are EOS, Meteosat, EPS, GCOM-W, GOES, S-NPP, JPSS, FYs, SMOS, SMAP, etc. Assimilation of these observations have significantly improved understanding of the land-atmosphere interaction and in turn gradually enhanced the prediction skills of the simulation models at all of these scales. This session invites abstracts that report the development, validation and applications of these studies especially in the Third Pole Environment regions in the recent years. New development on land surface process observation, data fusion, data assimilation, hydrological hazards monitoring, climate and environmental changes at regional and global scales are especially encouraged.

Public information:
Welcome to " HS6.2/AS2.5:Ground and Remote Sensing Observations and Modeling for Land-Atmospheric Interactions" session

Share:
Co-organized by AS2
Convener: Jun Wen | Co-conveners: Ji Zhou, Yaoming Ma, Fan Zhang
Displays
| Attendance Mon, 04 May, 10:45–12:30 (CEST), Attendance Mon, 04 May, 14:00–18:00 (CEST)
CL4.21

Land–atmosphere interactions often play a decisive role in shaping climate extremes. As climate change continues to exacerbate the occurrence of extreme events, a key challenge is to unravel how land states regulate the occurrence of droughts, heatwaves, intense precipitation and other extreme events. This session focuses on how natural and managed land surface conditions (e.g., soil moisture, soil temperature, vegetation state, surface albedo, snow or frozen soil) interact with other components of the climate system – via water, heat and carbon exchanges – and how these interactions affect the state and evolution of the atmospheric boundary layer. Moreover, emphasis is placed on the role of these interactions in alleviating or aggravating the occurrence and impacts of extreme events. We welcome studies using field measurements, remote sensing observations, theory and modelling to analyse this interplay under past, present and/or future climates and at scales ranging from local to global but with emphasis on larger scales.

Share:
Co-organized by AS2/HS13
Convener: Wim ThieryECSECS | Co-conveners: Gianpaolo Balsamo, Diego G. Miralles, Sonia Seneviratne, Adriaan J. (Ryan) Teuling
Displays
| Attendance Tue, 05 May, 14:00–15:45 (CEST)
AS2.8

Clouds play an important role in the polar climate due to their interaction with atmospheric radiation and their role in the hydrological cycle linking poleward water vapour transport with precipitation, thereby affecting the mass balance of the polar ice sheets. Cloud-radiative feedbacks have also an important influence on sea ice. Cloud and precipitation properties depend strongly on the atmospheric dynamics and moisture sources and transport, as well as on aerosol particles, which can act as cloud condensation and ice nuclei.

This session aims at bringing together researchers using observational and/or modeling approaches (at various scales) to improve our understanding of polar tropospheric clouds, precipitation, and related mechanisms and impacts. Contributions are invited on various relevant processes including (but not limited to):


- Drivers of cloud/precipitation microphysics at high latitudes,
- Sources of cloud nuclei both at local and long range,

- Linkages of polar clouds/precipitation to the moisture sources and transport,

- Relationship of the poleward moisture transport to processes in the tropics and extra-tropics, including extreme transport events (e.g., atmospheric rivers, moisture intrusions),

- Relationship of moisture/cloud/precipitation processes to the atmospheric dynamics, ranging from synoptic and meso-scale processes to teleconnections and climate indices,

- Role of the surface-atmosphere interaction in terms of mass, energy, and cloud nuclei particles (evaporation, precipitation, albedo changes, cloud nuclei sources, etc)
- Impacts that the clouds/precipitation in the Polar Regions have on the polar and global climate system, surface mass and energy balance, sea ice and ecosystems.

Papers including new methodologies specific to polar regions are encouraged, such as (i) improving polar cloud/precipitation parameterizations in atmospheric models, moisture transport events detection and attribution methods specifically in the high latitudes, and (ii) advancing observations of polar clouds and precipitation. We would like to emphasize collaborative observational and modeling activities, such as the Year of Polar Prediction (YOPP), Polar-CORDEX, the (AC)3 project on Arctic Amplification, SOCRATES, ACE and other campaigns in the Arctic and Southern Ocean/Antarctica, and encourage related contributions.

The session is endorsed by the SCAR Antarctic Clouds and Aerosols Action Group.


Public information:
Dear Authors,

Thank you all for your great contributions to this session. Hopefully, you have all already successfully uploaded your display material - if not please try to do it on Tuesday (before the Live Chat). If this is not possible - you can do it also during this month. Everyone in any case is welcome to participate in the Live Chat to share their work.

We invite everyone to check the posted material before our session's Live Chat, which is scheduled on 6 May, 08:30–10:15 (CEST=UTC+2). The Live Chat will be open from 8:15 to 10:45 CEST and is only by text chatting.

During the Live Chat we (conveners) will call the authors in the order of the Displays (which will be visible on the right from the chat's window) to shortly introduce their work (motivation.. main points..). It will be easier if everyone has this SHORT text prepared before hand. Please avoid copy/pasting the entire abstract, as all session participants have had the possibility to read the abstract and the posted material prior to the chat session. Then the chat will be open for questions and comments from all participants (we also recommend if possible to prepare your questions beforehand). With 21 abstracts we will have about 5 min to discuss each display.

If there are authors who are certainly not available to be present during the Live Chat - please let us know. You are also welcome to ask your co-authors or colleagues to present your work if the main author is not available at the chat time.

The Chat will be not recorded or stored. Only abstracts and displays will be available after this session. Everyone is welcome to post their comments directly to the Displays (commenting will be open until 1 June). This provides more freedom to discuss.

Looking forward to this new way of science sharing! Hope it goes smoothly:)

Best wishes to you all

Irina, Susanne, Manfred, Tom, Nicole

Share:
Co-organized by CL2/CR7
Convener: Irina V. Gorodetskaya | Co-conveners: Susanne Crewell, Tom Lachlan-Cope, Nicole van Lipzig, Manfred Wendisch
Displays
| Attendance Wed, 06 May, 08:30–10:15 (CEST)
AS2.9

The polar climate system is strongly affected by interactions between the atmosphere and the cryosphere. Feedback mechanisms between snow, land ice, sea ice and the atmosphere, such as blowing snow, ice melt, polynya formation, and sea ice production play an important role. Atmosphere-ice interactions are also triggered by synoptic weather phenomena such as cold air outbreaks, katabatic winds, polar cyclones, atmospheric rivers, Foehn winds and heatwaves. However, our understanding of these processes is still incomplete, and to fully capture how atmosphere, land ice and sea ice are coupled on different spatial and temporal scales, remains a major challenge.
This session will provide a setting to foster discussion on the atmosphere-ice coupling in both the Northern and Southern Hemispheres. It will offer the opportunity to review newly acquired knowledge, identify gaps, and which instruments, tools, and studies can be designed to address these open questions.
We invite contributions on all observational and modelling aspects of Arctic and Antarctic meteorology and climatology that address atmospheric interactions with the cryosphere. This may include studies of atmospheric dynamics that influence sea-ice dynamics or ice-sheet mass balance, or investigations into the variability of the atmospheric circulation such as polar jets, the circumpolar trough, storm tracks and their link to changes in the cryosphere.

Share:
Co-organized by CR7
Convener: Diana Francis | Co-conveners: Amélie Kirchgaessner, Till Wagner
Displays
| Attendance Mon, 04 May, 16:15–18:00 (CEST)
AS2.10

Atmosphere and Cryosphere are closely linked and need to be investigated as an interdisciplinary subject. Most of the cryospheric areas have undergone severe changes in last decades while such areas have been more fragile and less adaptable to global climate changes. This AS-CR session invites model- and observational-based investigations on any aspects of linkages between atmospheric processes and snow and ice on local, regional and global scales. Emphasis is given on the Arctic, high latitudes and altitudes, mountains, sea ice, Antarctic regions. In particular, we encourage studies that address aerosols (such as Black Carbon, Organic Carbon, dust, volcanic ash, diatoms, bioaerosols, bacteria, etc.) and changes in the cryosphere, e.g., effects on snow/ice melt and albedo. The session also focus on dust transport, aeolian deposition, and volcanic dust, including health, environmental or climate impacts at high latitudes, high altitudes and cold Polar Regions. We include contributions on biological and ecological sciences including dust-organisms interactions, cryoconites, bio-albedo, eco-physiological, biogeochemical and genomic studies. Related topics are light absorbing impurities, cold deserts, dust storms, long-range transport, glaciers darkening, polar ecology, and more. The scientific understanding of the AS-CR interaction needs to be addressed better and linked to the global climate predictions scenarios.

Share:
Co-organized by CL2/CR3
Convener: Pavla Dagsson Waldhauserova | Co-conveners: Outi Meinander, Marie Dumont, Biagio Di Mauro
Displays
| Attendance Mon, 04 May, 10:45–12:30 (CEST)
OS4.2

We invite presentations on ocean surface waves, and wind-generated waves in particular, their dynamics, modelling and applications. This is a large topic of the physical oceanography in its own right, but it is also becoming clear that many large-scale geophysical processes are essentially coupled with the surface waves, and those include climate, weather, tropical cyclones, Marginal Ice Zone and other phenomena in the atmosphere and many issues of the upper-ocean mixing below the interface. This is a rapidly developing area of research and geophysical applications, and contributions on wave-coupled effects in the lower atmosphere and upper ocean are strongly encouraged

Share:
Co-organized by AS2
Convener: Alexander Babanin | Co-conveners: Francisco J. Ocampo-Torres, Miguel Onorato, Fangli Qiao
Displays
| Attendance Thu, 07 May, 14:00–18:00 (CEST)
AS2.12

This session aims at fostering discussions on the physical processes at work at the air-sea interface, including their observation and their representation in coupled numerical models. Examples of such processes are solar radiation-induced diurnal warming and rain-induced cool and fresh lenses, as well as gustiness associated with atmospheric boundary layer thermals or moist convection and cold pools induced by rain evaporation. Air-sea interaction related to surface temperature and salinity fronts, as well as oceanic meso- and sub-mesoscale dynamics, are also of great interest.

This session is thus intended for (i) contributions presenting observational or theoretical aspects of the processes described above and their impact on energy, water, momentum, gas and aerosols exchanges at the interface; and (ii) contributions focusing on the mathematical and algorithmic methods used to represent these processes in coupled ocean-atmosphere models.

This session seeks observational studies based on recent field campaigns or satellite remote sensing. This session also aims to gather studies using numerical models of any level of complexity (from highly idealized to realistic) and any resolution from Large Eddy Simulation (LES) to global circulation models. Studies describing the impact of the air-sea interaction physical processes on the mean global or regional climates and variability representation are also welcome.

Share:
Co-organized by OS4
Convener: Hugo Bellenger | Co-conveners: Kyla Drushka, Audrey Hasson, Brian Ward
Displays
| Attendance Fri, 08 May, 16:15–18:00 (CEST)
OS1.9

Observations and model simulation illustrate significant ocean variability and associated air-sea interactions from regional to global scale and on diurnal to inter-annual time scales. This session is devoted to the understanding of the tropical and subtropical ocean dynamics, its interaction with the overlying atmosphere from the equator to mid-latitudes and its climate impacts on adjacent to remote areas.
Relevant processes in the ocean include upper and deep ocean circulation, mild SST gradients to sharp fronts, eddies, filaments, tropical instability waves, warm pools, cold tongues and eastern boundary upwellings. Furthermore, we are interested in air-sea interactions related to both the seasonal cycle and the development of modes of variability from local to basin scale. Wind variations related to Madden-Julian Oscillation, cyclones, and convective systems, as well as those leading the air-sea coupled modes (e.g., the Meridional Mode and Atlantic Niño) are welcome. Finally, we also seek contributions examining the causes and impacts of systematic model errors in simulating the local to regional climate.
Studies based on direct observations, reanalysis, reconstructions as well as model simulations are welcome.

Share:
Co-organized by AS2/CL2
Convener: Peter Brandt | Co-conveners: Alban Lazar, Marie-Lou BacheleryECSECS, Noel Keenlyside, Marta Martín-ReyECSECS, Teresa Losada, Ingo Richter
Displays
| Attendance Mon, 04 May, 14:00–18:00 (CEST)
AS2.14

Over the past decades, emission reductions for air pollution abatement resulted in changes in precipitation, cloud and aerosol chemical composition, and in atmospheric deposition of anthropogenically derived nutrients to the ocean, affecting atmospheric acidity and atmospheric deposition to ecosystems.
Atmospheric acidity is central to many processes in the atmosphere and the Earth system: atmospheric chemistry, biogeochemical cycles, atmospheric deposition, ecosystems, human health, and climate. Atmospheric deposition impacts on marine productivity, oceanic carbon dioxide uptake and emissions to the atmosphere of climate active species. These oceanic emissions of reactive species and greenhouse gases influence atmospheric chemistry and global climate, and induce potentially important chemistry-climate feedbacks. Thus, air-sea fluxes of biogeochemically active constituents have significant impacts on global biogeochemistry and climate.
Despite the wide range of important effects of atmospheric acidity and air-sea exchanges, scientific knowledge gaps remain. Understanding atmospheric acidity’s levels, its spatial and temporal variability and controlling factors in the precipitation and the suspended atmospheric media, aerosols and clouds, and its multiple impacts, is an open scientific topic for research. We also still lack understanding of many of the physical and biogeochemical processes linking atmospheric deposition, atmospheric acidity, nutrient availability, marine biological productivity, and the biogeochemical cycles governing air-sea fluxes of these climate active species. Atmospheric inputs of other toxic substances, e.g., lead, cadmium, copper, and persistent organic pollutants, into the ocean are also of concern.
To address these current knowledge gaps, in this session we welcome new findings from laboratory, in-situ and remote sensing observations and atmospheric and oceanic numerical models, on the status of atmospheric acidity, the factors that affect its levels, its wide range of impacts, on atmospheric deposition of nutrients and toxic substances to the ocean, their impacts on ocean biogeochemistry, on the air-sea fluxes of climate active species and potential feedbacks to climate.
This session is jointly sponsored by GESAMP Working Group 38 on ‘The Atmospheric Input of Chemicals to the Ocean’, the Surface Ocean-Lower Atmosphere Study (SOLAS), and the International Commission on Atmospheric Chemistry and Global Pollution (iCACGP).

Share:
Co-organized by BG4/OS3, co-sponsored by SOLAS and GESAMP WG38
Convener: Parvadha Suntharalingam | Co-conveners: Maria Kanakidou, Nicole Riemer, Arvind SinghECSECS, Andreas Zuend
Displays
| Attendance Fri, 08 May, 10:45–12:30 (CEST)
HS2.2.2

Earth Systems Models aim at describing the full water- and energy cycles, i.e. from the deep ocean or groundwater across the sea or land surface to the top of the atmosphere. The objective of the session is to create a valuable opportunity for interdisciplinary exchange of ideas and experiences among members of the Earth System modeling community and especially atmospheric-hydrological modelers.
Contributions are invited dealing with approaches how to capture the complex fluxes and interactions between surface water, groundwater, land surface processes, oceans and regional climate. This includes the development and application of one-way or fully-coupled hydrometeorological prediction systems for e.g. floods, droughts and water resources at various scales. We are interested in model systems that make use of innovative upscaling and downscaling schemes for predictions across various spatial- and temporal scales. Contributions on novel one-way and fully-coupled modeling systems and combined dynamical-statistical approaches are encouraged. A particular focus of the session is on weakly and strongly coupled data assimilation across the different compartments of the Earth system for the improved prediction of states and fluxes of water and energy. Merging of different observation types and observations at different length scales is addressed as well as different data assimilation approaches for the atmosphere-land system, the land surface-subsurface system and the atmosphere-ocean system. The value of different measurement types for the predictions of states and fluxes, and the additional value of measurements to update states across compartments is of high interest to the session. We also encourage contributions on use of field experiments and testbeds equipped with complex sensors and measurement systems allowing compartment-crossing and multi-variable validation of Earth System Models.

Share:
Co-organized by AS2/BG2/NH1/NP5/OS4
Convener: Harald Kunstmann | Co-conveners: Harrie-Jan Hendricks Franssen, Alfonso Senatore, Gabriëlle De Lannoy, Martin Drews, Lars Nerger, Stefan Kollet, Insa Neuweiler
Displays
| Attendance Tue, 05 May, 10:45–12:30 (CEST)
AS2.16

To showcase their strong thematic connection, the two sessions “Air-Land Interactions (General Session)” and “Understanding and Characterization of Land-Atmosphere Feedback” were merged.

The session is addressed to experimentalists and modellers working on land surface fluxes from local to regional scales. The programme is open to a wide range of new studies in micrometeorology. The topics include the development of new devices, measurement techniques and experimental design methods, as well as novel findings on surface layer theory and parametrization at the local scale. The theoretical parts encompass soil-vegetation-atmosphere transport, internal boundary-layer theories and flux footprint analyses, etc.. Of special interest are comparisons of experimental data, parametrizations and models. This includes energy and trace gas fluxes (inert and reactive) as well as water, carbon dioxide and other GHG fluxes. Specific focus is given to outstanding problems in land surface boundary layer descriptions such as complex terrain, energy balance closure, stable stratification and night time fluxes, as well as to the dynamic interactions with atmosphere, plants (in canopy and above canopy) and soils including the scale problems in atmosphere and soil exchange processes.

The understanding of feedback processes in the land-atmosphere (L-A) system is crucial for advanced modeling and prediction of weather and climate. However, the impact of soil moisture and evapotranspiration on the diurnal cycle of the planetary boundary layer (PBL), clouds, and precipitation remains a sore gap in our understanding of weather processes and climate statistics. For this purpose, the exchange of momentum, water, energy, and carbon at the land surface and at the top of the PBL has to be investigated from the local to regional scales in great detail. In this session, we accept observational and modeling approaches to address these challenges. With respect to the observations, emphasis is put on the application of new sensor synergies for studying L-A exchange processes and entrainment at the PBL top based on long-term data sets or recent field campaigns, e.g., combining multi-tower, scanning lidar, airborne, and satellite observations. With respect to theoretical understanding and modeling, we welcome the study of feedback processes as well as the derivation and application of feedback metrics from the mesoscale to turbulent scales, e.g., derived by large eddy simulations.

Share:
Co-organized by BG1/HS13
Convener: Andreas Ibrom | Co-conveners: Christoph Thomas, Natascha Kljun, Volker Wulfmeyer, Linda Schlemmer, Matthias Mauder, Georg Jocher
Displays
| Attendance Wed, 06 May, 10:45–12:30 (CEST), Attendance Wed, 06 May, 14:00–15:45 (CEST)