Union-wide
Inter- and Transdisciplinary Sessions
Disciplinary sessions AS–GM
Disciplinary sessions GMPV–TS

Session programme

GD7

GD – Geodynamics

Programme group chair: Paul Tackley

GD7 – Geodynamics of Specific Regions

GD7.1

The Arctic realm hosts vast extended continental shelves bordering old land masses, one of the largest submarine Large Igneous Provinces (LIPs) -the Alpha-Mendeleev Ridge - of Mesozoic age, and the slowest mid-ocean spreading ridge (the Gakkel Ridge) on the globe. Extreme variations in the evolution of landscapes and geology reflect the tug-of-war between the formation of new oceans, like the North Atlantic, and the destruction of older oceans: the South Anyui, Angayucham and North Pacific, which were accompanied by rifting, collision, uplift and subsidence. The causal relationships between the deep-mantle and surface processes in the Circum-Arcic region remain unclear. Geoscientific information on the relationship between the onshore geology and offshore ridges and basins in combination with variations in the mantle is the key for any deeper understanding of the entire Arctic Ocean.
This session provides a forum for discussions of a variety of problems linked to the Circum-Arctic geodynamics and aims to bring together a diversity of sub-disciplines including plate tectonics, mantle tomography, seismology, geodynamic modelling, igneous and structural geology, geophysical imaging, sedimentology, and geochemistry. Particularly encouraged are papers that address lithospheric-mantle interactions in the North Atlantic, the Arctic and North Pacific regions, mantle dynamics and vertical and horizontal motion of crustal blocks and consequences for paleogeography. As geologic and tectonic models are inherently tied with changes in the oceanographic and climatic development of the Arctic, we also invite studies that focus on the interplay between these processes and across timescales. Lastly, we would like to invite contributions from studies concerning the implications of how the Arctic’s geography and geology are portrayed by modern data and issues related to jurisdiction and sovereign rights with particular focus on the UN Convention on the Law of the Sea.

Share:
Co-organized by CL4/GMPV11/SM4/TS14
Convener: Grace E. ShephardECSECS | Co-conveners: Frances DeeganECSECS, Karolina Kośmińska, Rebekka Steffen
Displays
| Attendance Mon, 04 May, 14:00–15:45 (CEST)
GD7.2

Interdisciplinary study of the Northeast Atlantic region offers an extraordinary opportunity to advance understanding of interactions and co-dependencies between the solid Earth, ocean, atmosphere, cryosphere and climate. Understanding these issues are of critical importance to Europe and Scandinavia, and they are of global relevance. The unprecedented surge in exploration of the Northeast Atlantic Realm that has unfolded in recent years has delivered major leaps forward in understanding its geological structure, dynamics and development, economic resources and volcanism. Examples include the complexity of the conjugate volcanic rifted margins, contact metamorphism of carbon-rich shales by sill intrusions, producing thermogenic methane, the discovery of widespread continental crust in the ocean, the critical role of the Greenland-Iceland-Faroe bathymetric ridge in influencing ocean circulation between the Arctic and the Atlantic south of Iceland, mapping of gas hydrates and the study of crustal structure beneath the Greenland icecap. Throughout the Cenozoic these factors have influenced ocean and atmosphere composition and circulation, climate change, and the growth, wastage and transport of ice. Detailed understanding of the interdependencies of these phenomena in the past and through time is arguably of critical importance to understanding the current, rapid changes in the natural environment. The goal of this special session is to bring together diverse contributions drawing on all the above disciplines in order to identify potentially fertile areas for broad, cross-disciplinary study of the Northeast Atlantic Realm moving forward.

Share:
Co-organized by CL1/OS1/TS6
Convener: Laurent Geoffroy | Co-conveners: G.R. Foulger, Dieter Franke, Catherine Kissel
Displays
| Attendance Wed, 06 May, 10:45–12:30 (CEST)
TS7.6

The Alps have been intensively studied by geologists for more than a century, providing a unique natural laboratory to deepen our understanding of orogenic processes and their relationship to mantle dynamics. Although most concepts that underlie current studies of mountain belts and convergence dynamics were born in the Alps, the belt is now being examined with renewed vigour in the AlpArray project. This project involves a large number of European institutions, with efforts focused on the AlpArray Seismic Network to provide homogeneous seismological coverage of the greater Alpine area at unprecedented aperture and station density, both on land and sea. New data is being recorded in a multidisciplinary research effort, and other projects are being planned in the immediate and mid-term future.
Within this context, we invite contributions from the Earth Science community that highlight new results in AlpArray and that identify and solve key open questions of the present and past structure and dynamics of the Alps and neighbouring orogens. Both disciplinary and multi-disciplinary contributions are welcome from geophysical imaging, (seismo)tectonics, structural geology, gravimetry, geodesy, geodynamics, petrology, geochronology and other allied fields, combined with various modelling approaches. Scales of interest range from crustal to upper mantle, in the Alps and neighbouring mountain belts such as the Apennines, the Carpathians and the Dinarides.

Share:
Co-organized by GD7/SM4
Convener: Anne Paul | Co-conveners: Mark R. Handy, György Hetényi, Marco Giovanni Malusa', Irene Molinari
Displays
| Attendance Thu, 07 May, 10:45–12:30 (CEST), Attendance Thu, 07 May, 14:00–15:45 (CEST)
TS7.4

The Alpine-Himalayan orogenic belt is one of the largest and most prominent suture zones on Earth. The belt ranges from the Mediterranean in the west to Indonesia in the east. It results from the subduction and closing of different branches of the Tethyan Oceanic Realm and the subsequent collision of the African, Arabian and Indian continental plates with Eurasia. Its long-lasting geological record of complex interactions among major and smaller plates, featuring the presence of subduction zones at different evolutionary stages, has progressively grown as a comprehensive test site to investigate fundamental plate tectonics and geodynamic processes with multi-disciplinary studies. Advances in a variety of geophysical and geological fields provide a rich and growing set of constraints on the crust-lithosphere and mantle structure, as well as tectonics and geodynamic evolution of the entire mountain belt

We welcome contributions presenting new insights and observations derived from different perspectives like geology (stratigraphy, petrology, geochronology, geochemistry, tectonics and geomorphology), geophysics (seismicity, seismic imaging, seismic anisotropy, gravity), geodesy (GPS, InSAR), modelling (numerical and analogue), risk assessment (earthquake, volcanism), as well as from multi-disciplinary studies.

Keynote presentation by Boris Kaus (University of Mainz)

Public information:
The discussion during the chat sessions will follow an order based on location (from East to West), and divide the abstracts such that in the first block we will go from the Himalaya region to Turkey-Anatolia-Cyprus and the East Mediterranean Basin, and in the second block, we will cover the Mediterranean from the Western side of the Black Sea (i.e. Bulgaria) to the Westernmost Mediterranean. The preliminary order (hoping that authors upload their display) is:
14:00-15:45
1· Jatupohnkhongchai et al.
2· Bai et al.
3· Chen et al.

4· Knight et al.
5· Stoner et al.
6· Wei Li et al.

7· Barbero et al.
8 Lom et al.
9· Simmonds et al.
10· Mahleqa Rezaei et al.

11· Sağlam et al.
12· Mueller et al.
13· Gürer et al.
14· Nirrengarten et al.

BREAK (30 minutes)

16:15-18:00
1· de Leeuw et al.
2· Balkanska and Georgiev (?)

3· Faucher et al.
4· Molnár et al.
5· Stanković et al.

6· Schneider and Balen
7· Chang et al.
8· Kaus et al.
9· El-Sharkawy et al.
10· Agostini et al.

11· Gimeno et al.
12· de la Peña et al.
13· Negredo et al.
14· Jiménez-Munt et al.
15· Kumar et al.

Share:
Co-organized by GD7/GMPV11/SM2
Convener: Ágnes Király | Co-conveners: Derya GürerECSECS, Marc Hässig, Claudia Piromallo
Displays
| Attendance Fri, 08 May, 14:00–15:45 (CEST), Attendance Fri, 08 May, 16:15–18:00 (CEST)
SM2.11

The Mediterranean region spanning from the Betic Cordillera and the Alboran Sea to the Levantine and Dead Seas is the most tectonically active region of Europe. Over the last decades several moderate to large magnitude earthquakes affected the Mediterranean regions often causing substantial economical and sometimes human losses. The scientific community is developing a better understanding of the crustal processes that may drive seismic sequences thanks to denser and higher quality geophysical networks, multidisciplinary experiments and rapid field deployments in the aftermath of a mainshock. This allowed increasingly larger and more accurate datasets that can be exploited to improve the knowledge of crustal seismogenic processes. Over the years, this effort lead to the identification of seismic gaps, the production of seismic hazard maps and, not least, the characterization of seismogenic structures. Yet, each seismic sequence seems to be strongly affected by the local tectonics and by the interplay of crustal processes.

In this session we welcome contributions aimed at a better understanding of recent seismic sequences that may help improving our still fragmentary knowledge of earthquake nucleation processes. We are interested in new results from earthquakes that occurred both in front-arc and back-arc regions along the convergence zones between Africa and Europe, in the Apennines and other Mediterranean regions and their comparison with major historical earthquakes. This includes geophysical experiments, analyses of recent seismic sequences, and multidisciplinary studies focusing on the identification, characterisation and monitoring of seismic gaps. We also encourage analyses of fluid-driven seismic sequences and offshore campaigns characterizing key regional faults.

Share:
Co-organized by GD7/TS5
Convener: Matteo Lupi | Co-conveners: Athanassios Ganas, Eulàlia Gràcia Mont, Marc-Andre Gutscher, Fabio Villani
Displays
| Attendance Mon, 04 May, 14:00–15:45 (CEST)
TS5.5

The broad scale tectonics of the Eastern Mediterranean are dominated by the interaction of the Nubian and Arabian plates with the Eurasian plate. This complex tectonic frame exhibit almost all type of plate boundary conditions such as continental convergence and extension, oceanic subduction, and continental transform. The evolution and present deformation are constrained by diverse geological, geophysical, and geodetic observations and have been explained by different hypotheses, such as (a) tectonic escape system caused by the post-collisional convergence of Eurasian and Arabian plates creating forces at its boundaries with gravitational potential differences of the Anatolian high plateau (b) asthenospheric flow dragging the circular flow of lithosphere from the Levant to Anatolia in the east and the Aegean in the west, (c) slab pull of the Hellenic subduction, (d) mantle upwelling underneath Afar and with the large-scale flow associated with a whole mantle, Tethyan convection cell, (e) or combinations of these mechanisms for the Eastern Mediterranean. Naturally, this tectonic setting generates frequent earthquakes with large magnitudes (M > 7), forming a natural laboratory on understanding the crustal deformation, and crust-mantle interactions for various disciplines of active tectonics.
Multi-disciplinary studies, especially within the last three decades, have made significant contributions to our understanding of the processes on the crustal deformation, and interaction of the mantle with the crustal processes of this region. With this session, we aim to bring together the recent findings of these studies, thus we welcome/invite contributions from a wide range of disciplines including, but not limited to, neotectonics, seismology, tectonic geodesy (e.g. GNSS, InSAR), paleoseismology, tectonic geomorphology, remote sensing, structural geology and geodynamic modelling, which geographically cover the Eastern Mediterranean region, including Anatolia-Aegean Block, Caucasus, Iran, Middle East and Greece.

Invited talks:
- Jonathan Weiss - Measuring Anatolian plate velocity and strain with InSAR: Implications for fault-locking, seismic hazard, and crustal dynamics.
- Pierre Henry - Contrasting seismogenic behaviors on the North Anatolian Fault in the Sea of Marmara

Share:
Co-organized by GD7/NH4/SM2
Convener: Cengiz Zabcı | Co-conveners: Michael Floyd, A. Ozgun Konca, Onno Oncken, Philippe Vernant
Displays
| Attendance Thu, 07 May, 14:00–18:00 (CEST)
TS6.1

The separation of the African and Arabian plates is responsible for the opening of the Red Sea and Gulf of Aden that meet the East African Rift at the Afar triple junction. Moreover, the strike-slip movement between the African and the Arabian plates is accommodated in the northernmost part of the rift system by the Dead Sea fault and its marine extension in the Gulf of Aqaba. High volcanic and seismic activity in and around the three arms of the divergence highlights some of the key aspects of this opening system.

This complex geodynamic system is currently investigated by multiple geoscientific approaches including e.g., tectonics, volcanology, stratigraphy, geodynamics, geodesy as well as active and passive geophysical methods.

In this session, we welcome contributions that are based on (but not limited to) such methods and investigate the basins of the Gulf of Suez, Gulf of Aqaba, Red Sea, Gulf of Aden, Afar depression and their surrounding regions, from the mantle to the crust.

Share:
Co-organized by GD7/GMPV11/SM4
Convener: Laura ParisiECSECS | Co-conveners: Nico Augustin, Joël Ruch, Daniele TrippaneraECSECS
Displays
| Attendance Wed, 06 May, 08:30–10:15 (CEST)
TS6.2

The West Pacific regime is dominated by a convergent plate setting, but develops two thirds of the world’s marginal basins which have different histories and causes. Some are built on continental crust and some formed by seafloor spreading. Some began to form in Mesozoic time and others began in Cenozoic time. Many are filled with sediments and volcanics and some of these contain hydrocarbon deposits. Some are no longer actively extending but others are still tectonically active and pose hazards to nearby coastal communities. The purpose of this session is to present our modern understanding of these marginal basins, how they formed, how they subsided, how they were filled, how they died, and the economic benefits and potential hazards they present.
In this session, we welcome all contributions that deal with marginal basins in the West Pacific and/or try to answer to the questions related to the evolution of marginal basins in convergent plate settings. We particularly encourage multi-disciplinary studies that address the issues of inheritance on the rifting process, the discuss modes of breakup, the role of magmatism in lithospheric breakup and the contribution of sedimentation and source to sink processes in marginal margins.

Public information:
(1) For attenders, you are encrouraged to download and read through the related present materials before the session, and prepare your comments and questions (in text) in advance to avoid delays;
(2) For presenters, please give a short summary of your research, and be prepared to answer questions. It will be better to have some of the answers on your conclusions and methods typed in advance.
(3) Provide your contacts to audience, thus the discussion could continue after the session.

Share:
Co-organized by GD7
Convener: Weiwei Ding | Co-conveners: Dieter Franke, Jiabiao Li, Gianreto Manatschal, Zhen SUN
Displays
| Attendance Tue, 05 May, 08:30–10:15 (CEST)
SSP2.13

Interactions between tectonics, climate and biotic evolution are ideally expressed in Asian orogenies. The ongoing surge of international research on Asian regions enables to better constrain paleoenvironmental changes and biotic evolutions as well as their potential driving mechanisms such as global climate, the India-Asia collision and the tectonic growth of the Himalayan-Tibetan and other Asian orogens. Together these efforts allow for a comprehensive paleogeographic and paleoenvironmental reconstructions that enable to constrain climate modelling experiments which permit validation of hypotheses on potential interactions.
The goal of this session is to assemble research efforts that constrain Asian tectonic, climate (monsoons, westerlies, aridification), land-sea distribution, surface processes or paleobiogeographic evolution at various timescales. We invite contributions from any discipline aiming for this goal including broadly integrated stratigraphy, tectonic, biogeology, climate modelling, geodynamic, oceanography, geochemistry or petrology.

Share:
Co-organized by CL1/EMRP3/GD7/TS7
Convener: Guillaume Dupont-Nivet | Co-conveners: Frederic Fluteau, Carina Hoorn, Niels MeijerECSECS, Douwe J. J. van Hinsbergen
Displays
| Attendance Fri, 08 May, 14:00–15:45 (CEST)