Union-wide
Inter- and Transdisciplinary Sessions
Disciplinary sessions AS–GM
Disciplinary sessions GMPV–TS

Session programme

GM6

GM – Geomorphology

Programme group chair: Daniel Parsons

GM6 – Coastal and Submarine Geomorphology

Programme group scientific officer: Annegret Larsen

GM6.1

Coastal wetland ecosystems, such as salt marshes, mangroves, seagrass beds and tidal flats, are under increasing pressure from natural and anthropogenic processes shifting climatic conditions, and are declining in area and habitat quality globally. These environments provide numerous ecosystem services, including flood risk mediation, biodiversity provision and climate change mitigation through carbon storage. Hence, the need to get a deeper understanding of processes and interactions in these environments, and how these may be altered by climate change has never been greater. This is the case for ‘managed’, restored wetlands and natural systems alike.
This session will bring together studies of coastal wetland ecosystems across climates and geomorphic settings, to enhance the understanding of ecosystem service provisioning, interactions between hydrodynamics, sediment and ecology, and identify best future management practices. Studies of all processes occurring within coastal wetlands are invited. This includes, but is not exclusive to, sediment dynamics, hydrology, hydrodynamics, biogeochemistry, morphological characterisation, geotechnical analysis, bio-morphodynamics, ecological change and evolution, impact of climate change, sea level rise, anthropogenic and management implications. Multidisciplinary approaches across spatial and temporal scales are encouraged, especially in relation to global climate change. This session aims to enhance our understanding of basic processes governing coastal wetland dynamics and to propose sustainable management solutions for contemporary environmental pressures.

Share:
Co-organized by BG4/HS13/OS2
Convener: Mark Schuerch | Co-conveners: Thorsten BalkeECSECS, Helen BrooksECSECS, Ruth Reef, Christian SchwarzECSECS
Displays
| Attendance Fri, 08 May, 16:15–18:00 (CEST)
GM6.2

The world’s deltas and coastal wetlands support over 350 million people, yet account for less than 1% of the Earth’s surface. They protect people and assets from flooding and erosion, are increasingly considered as part of ‘nature-based’ or ‘soft engineered’ flood and erosion protection approaches and support an extensive range of ecosystem services and high levels of biodiversity. Yet coastal wetlands and delta are facing myriad threats due to biodiversity loss, habitat degradation, sea-level rise, subsidence, sediment extraction and compaction, groundwater extraction and modifications of their upstream catchments. Predicting how these sedimentary environments respond to combinations of such drivers (e.g. the changed frequency/magnitude of storm events) requires greater knowledge of their resistive properties at a range of scales, from landform response to extreme events to whole-system response to steadily shifting baselines (e.g. sea level rise).
This session aims to bring together the state-of-the-science knowledge from a range of disciplines (geomorphology, hydrology, ecology, biogeochemical and social sciences). We are committed to supporting early career researchers and this session should be of interest to practitioners working in the field of flood and erosion protection, particularly in the river and coastal context.

Share:
Co-organized by OS2
Convener: Christopher HackneyECSECS | Co-conveners: Rachael CarrieECSECS, Frances DunnECSECS, Iris Moeller, Grigorios VasilopoulosECSECS
Displays
| Attendance Mon, 04 May, 16:15–18:00 (CEST)
GM6.3

Examining coastal morphodynamics from the nearshore through to inland dune systems is fundamental in understanding their short- to long-term behaviour. Coastal processes operate across large spatial and temporal scales and therefore comprehending their resulting landforms is complex.

At the coast, dunes provide the physical barrier to flooding during high energy storms, while beaches and nearshore areas help dissipate storm impact through a series of dynamic interactions involving sediment transfers and at times rapid morphological changes. Investigation of complex interactions between these three interconnected systems has become essential for understanding coastal behaviour.

This session, sponsored by the IGU-UGI Commission on Coastal Systems, welcomes contributions from coastal scientists interested in the measurement and modelling of the nearshore 25-0 m zone (waves, currents and sediment transport) and terrestrial coastal processes (on beaches and dunes) and responses within the three sub-units at various scales. The session will highlight the latest research developments in this part of the planet's geomorphic system and facilitate knowledge exchange between the submerged and sub-aerial coastal zones.

Public information:
We will be organising this session into time groupings on the day, with 5 displays in each 20 min slot according to the following order:
GROUP 1: 08:30 - 08:50
1. D986 |EGU2020-7875 Modelling nearshore sediment fluxes in embayed settings over a multi-annual timescale
Nieves Valiente, Gerd Masselink, Robert Jak McCarroll, Andy Saulter, Tim Scott, Daniel Conley, and Erin King
2. D988 | EGU2020-11236 A novel shoreface translation model for predicting future coastal change
Jak McCarroll, Gerd Masselink, Nieves Valiente, Mark Wiggins, Josie-Alice Kirby, Tim Scott, and Mark Davidson
3. D989 | EGU2020-4882 Two centuries of shoreline evolution and storm events in Dundrum Bay, Northern Ireland.
Edoardo Grottoli, Melanie Biausque, Derek W.T. Jackson, and Andrew J. G. Cooper
4. D990 | EGU2020-18730 Characteristics and dynamics of crescentic bar events at an open, Mediterranean beach
Rinse de Swart, Francesca Ribas, Daniel Calvete, Gonzalo Simarro, and Jorge Guillén
5. D991 |EGU2020-11977 Aeolian transport on a wet beach: Field observations from the swash zone
Christy Swann and sarah trimble

GROUP 2: 08:50 - 09:10
6. D992 | EGU2020-17470 Post-storm recuperation as a stepping-stone towards long-term integrated modelling in steep beaches
Katerina Kombiadou, Susana Costas, Dano Roelvink, and Robert McCall
7. D993 | EGU2020-406 Nearshore morphodynamics along the coastline of southern Sweden from detailed surficial mapping and hydrodynamic modelling
Johan Nyberg, Bradley Goodfellow, Jonas Ising, and Anna Hedenström
8. D994 | EGU2020-781 Wave, Tide and Morphological Controls on Embayment Circulation and Headland Sand Bypassing
Erin King, Daniel Conley, Gerd Masselink, Nicoletta Leonardi, Robert McCarroll, Timothy Scott, and Nieves Valiente
9. D995 | EGU2020-1407 Forecast of development of sea coasts on their morphodynamic state according to the results of space images descryption
Ruben Kosyan, Nickolay Dunaev, Tatyana Repkina, and Jose Juanes Marti
10. D996 | EGU2020-3072 Using unmanned aerial vehicle (UAV) photogrammetry for monitoring seasonal changes of barrier island in the southwestern coast of Taiwan
Hui-Ju Hsu, Shyi-Jeng Chyi, Chia-Hung Jen, Lih-Der Ho, and Jia-Hong Chen

GROUP 3: 09:10 - 09:30
11. D997 | EGU2020-4215 The Missing link between beach and clifftop dune – Landscape evolution of the climbing dune in the Feng-Chiue-Sha area of Hengchun Peninsula, Taiwan
Lih-Der Ho, Christopher Lüthgens, Chun Chen, and Shyh-Jeng Chyi
12. D998 | EGU2020-4883 Short-term morphological changes of multiple intertidal bars on macrotidal beaches: from seasonal to storm-scales.
Melanie Biausque, Edoardo Grottoli, Derek Jackson, and Andrew Cooper
13. D999 | EGU2020-2566 Databased simulation and reconstruction of the near shore geomorphological structure and sediment composition of the German tidal flats
Julian Sievers, Peter Milbradt, and Malte Rubel
14. D1000 | EGU2020-5184 The use of a low cost, time-lapse camera for high frequency monitoring of intertidal beach morphology
Emilia Guisado-Pintado and Derek W.T. Jackson
15. D1001 | EGU2020-8059 Longshore variation in coastal foredune growth on a megatidal beach from UAV measurements
Iain Fairley, Jose Horrillo-Caraballo, Anouska Mendzil, Georgie Blow, Henry Miller, Ian Masters, Harshinie Karunarathna, and Dominic Reeve

GROUP 4: 09:30 - 09:50
16. D1002 | EGU2020-8252 Spatial and temporal changes of sediment grain size along Israel’s Mediterranean cliff-dominated beaches
Onn Crouvi, Ran Shemesh, Oded Katz, Amit Mushkin, Navot Morag, and Nadav Lensky
17. D1003 | EGU2020-10010 Environmental change assesments in response to anthropogenic human footprint in the Nalón estuary (Asturias-NW Spain)
Germán Flor-Blanco, Efrén García-Ordiales, Germán Flor, Julio López Peláez, Nieves Roqueñí, and Violeta Navarro-García
18. D1004 | EGU2020-10251 Sedimentary evolution of a bedrock-conditioned incised valley since the Last Glacial Maximum: the Ría de Arousa (NW Spain)
Víctor Cartelle, Soledad García-Gil, Iria García-Moreiras, Castor Muñoz-Sobrino, and Natalia Martínez-Carreño
19. D1005 | EGU2020-10493 Sedimentary conditioning of a rocky strait during the Holocene transgression: Ría de Ferrol (NW Spain)
Soledad García-Gil, Víctor Cartelle, Castor Muñoz-Sobrino, Natalia Martínez-Carreño, and Iria García-Moreiras
20. D1006 | EGU2020-10501 A RANS numerical model for cross-shore beach profile evolution
Julio Garcia-Maribona, Javier L. Lara, Maria Maza, and Iñigo J. Losada

GROUP 5: 09:50-10:10
21. D1007 | EGU2020-11697 Coarse sediment tracing experiment at the Promenade des Anglais (Nice, France)
Duccio Bertoni, Giovanni Sarti, Giacomo Bruno, Alessandro Pozzebon, Rémi Doumasdelage, and Julien Larraun
22. D1008 | EGU2020-13206 Multiple sand bar dynamics in the macrotidal Shinduri beach, west coast of Korea
Tae Soo Chang, Hyun Ho Youn, and Seung Soo Chun
23. D1009 | EGU2020-17932 Empirical modelling of beach evolution: implementation of coupled cross-shore and longshore approaches
Teddy Chataigner, Marissa Yates, and Nicolas Le Dantec
24. D1010 | EGU2020-15230 Landscape drivers of coastal dune mobility
Thomas Smyth, Ryan Wilson, Paul Rooney, and Katherine Yates
25. D1011 | EGU2020-18568 Exploring the role of vegetation and sediment supply to coastal dune states using integrated process-based modelling
Susana Costas, Katerina Kombiadou, and Dano Roelvink

WRAP-UP 10:10 - 10:15

Share:
Co-organized by OS2/SSP3, co-sponsored by IGU-CCS
Convener: Derek Jackson | Co-conveners: Emilia Guisado-Pintado, Irene Delgado-Fernandez
Displays
| Attendance Fri, 08 May, 08:30–10:15 (CEST)
GM6.4

Coasts worldwide face a great variety of environmental impacts as well as increased anthropogenic pressures of coastal zone urbanization and rapid population growth. Over the last decade coastal erosion has emerged as a widespread problem that causes shoreline retreat and irreversible land losses. The attempts of managers and other stakeholders to cope with erosion using different types of hard engineering methods may often aggravate this problem, damaging natural landscape and coastal ecosystems in unexpected and unpredicted ways. Other negative impacts of human activities on littoral environments are chronic and punctual pollution of beach and coastal sediments with associated health risks for human beings. Chronic pollution is often observed in coastal areas close to factories, industries and human settlements - because of waste water discharges, punctual contamination is often linked to beach oiling.
The session gives priority to the subjects of coastal geomorphology: evolution of coastal landforms, coastal morphodynamics, coastline alterations and various associated processes in the coastal zone, e.g. waves and sediment drift, which shape coastal features and cause morphological changes. Contributions to this session will focus on the mechanisms responsible for coastal erosion and shoreline behaviour (advance or retreat) and will address the many natural and human factors involved. The topics may include work on predictions of shoreline change and discussions on the effects of human activities and their continuing contribution to coastal changes. The session will also cover submissions on coastal vulnerability to the combined effects of natural and human-related hazards, any type of coastal and environmental sensitivity classifications, and risk assessments. Globally, coastal dunes are seriously threatened as people tend to modify landforms and habitats through their actions and regulations, and the session invites also studies on natural and human-induced geomorphological changes of sand dunes, and recent projects and examples of dune eco-restoration and re-building.
Last, but not the least, studies related to Marine Spatial Planning (MSP), including Integrated Coastal Management (ICM), are also welcome. For any MSP and ICM, it is essential to consider the dynamics across the land-sea interface, i.e. the Land-Sea Interactions (LSI) that involve both natural processes and the impact of human activities.

Public information:
We will organize the session in four groups. We stop very shortly on abstracts without displays and spend at least 5 minutes for those with uploaded displays.

GROUP 1: 10:45 - 11:10

1. D1012 | EGU2020-95: “The Future of the World's Sandy Beaches Under a Changing Climate.” Authors: Michalis Vousdoukas, Roshanka Ranasinghe, Lorenzo Mentaschi, Theocharis Plomaritis, and Luc Feyen.

2. D1013 | EGU2020-624: “A Feasibility Investigation for Developing Artificial Beachrocks: A Potential Measure for Coastal Protection in Southeast Yogyakarta Coast, Indonesia.” Authors: Lutfian Rusdi Daryono, Kazunori Nakashima, Satoru Kawasaki, Koichi Suzuki, Anastasia Dewi Titisari, Didit Hadi Barianto, Imam Suyanto, and Arief Rahmadi.

3. D1014D1014 | EGU2020-3174: “Disintegrated coastal zone management (DICZM): an example from Auckland, New Zealand.” Authors: Martin Brook, Alex Palma, Rosemary Garill, Nick Richards, and Jon Tunnicliffe.

4. D1015 | EGU2020-3320: “Enhancing shoreline advance by ploughing the intertidal beach: Physical simulation.” Authors: Erica Pellón, Iñigo Aniel-Quiroga, Mauricio González, and Raúl Medina.

5. D1016 | EGU2020-2124: “Innovative Approach for Addressing Coastal Erosion Protection Using Microbial Induced Carbonate Precipitation.” Authors: Md Al Imran, Kazunori Nakashima, Niki Evelpidou, and Satoru Kawasaki.



GROUP 2: 11:10 - 11:35

6. D1017 | EGU2020-1609: “Controls on coastal overwash morphology in natural and built environments.” Authors: Hannah Williams, Luke Taylor, Evan Goldstein, and Eli Lazarus.

7. D1018 | EGU2020-5716: “Coastal geomorphic response to volcano-tectonic activity in the Campi Flegrei Caldera: new insight from the geoarchaeological study of Portus Julius (Pozzuoli Gulf, Italy).” Authors: Claudia Caporizzo, Pietro Patrizio Ciro Aucelli, Gaia Mattei, Aldo Cinque, Salvatore Troisi, Michele Stefanile, Francesco Peluso, and Gerardo Pappone.

8. D1019 | EGU2020-4628: “Mapping of Coastal Cliff Erosion in Denmark.” Authors: Gregor Luetzenburg, Kristian Svennevig, Anders A. Bjørk, and Aart Kroon.

9. D1020 | EGU2020-11484: “Driving mechanisms of coastal cliff retreat in flysch deposits on the eastern Adriatic coast.” Authors: Goran Vlastelica, Kristina Pikelj, and Branko Kordić.

10. D1021 | EGU2020-20486: “Morphodynamic types of postglacial cliffs of the Southern Baltic.” Authors: Andrzej Kostrzewski, Marcin Winowski, and Zbigniew Zwoliński.



GROUP 3: 11:35 - 12:00

11. D1022 | EGU2020-20386: “Spatial diversity and time variability of erosion and accumulation processes on the unconsolidated cliffs of the Wolin Island (Southern Baltic - Pomeranian Bay).” Authors: Marcin Winowski, Zbigniew Zwoliński, Andrzej Kostrzewski, and Jacek Tylkowski.

12. D1023 | EGU2020-5755: “Geomorphological properties of the island of Hvar beaches (Croatia, Eastern Adriatic Coast).” Authors: Marin Mićunović and Sanja Faivre.

13. D1024 | EGU2020-7140: “Coastal Stability and Micro Morphology; Disturbances due to Human Interventions along West Coast of India.” Authors: Rafeeque Mk, Akhil Thulasidharan, Mintu E George, Suresh Babu Ds, and Prasad Tk.

14. D1025 | EGU2020-1623: “Surface sediments of Richards Bay Harbour, South Africa – potential pollutants (heavy metals, persistent organic pollutants, microplastics) and grainsize distribution.” Authors: Paul Mehlhorn, Marc Humphries, Peter Frenzel, Olga Gildeeva, Annette Hahn, Finn Viehberg, and Torsten Haberzettl.

15. D1026 | EGU2020-7592: “Bank Erosion Processes, Trends and Impacts in a Hypertidal Estuarine System.” Authors: Andrea Gasparotto, Julian Leyland, Stephen Darby, and Paul Carling.


GROUP 4: 12:00 - 12:20

16. D1027 | EGU2020-10272: “The coastal vulnerability of the north-eastern sector of Gozo Island (Malta, Mediterranean Sea).” Authors: Mauro Soldati, George Buhagiar, Anton S. Micallef, Angela Rizzo, and Vittoria Vandelli.

17. D1028 | EGU2020-19785: “A DPSIR analysis of aeolian sand dune mobilization along the coast of Manawatu-Wanganui in New Zealand.” Authors: Dissanayake Mudiyanselage Ruwan Sampath and Joana Gaspar de Freitas.

18. D1029 | EGU2020-11173: “Rapid shifts in the Baltic Sea region climate, detected from the ancient coastal formations and number of other ecosystems – how likely it is to happen again and what are the consequences?” Authors: Sandra Kuusik and Hannes Tõnisson.

19. D1030 | EGU2020-10487: “Aperiodic embayed sandy beach rotation and erosion-risk exposure on a hyper-muddy wave-exposed coast.” Authors: Edward Anthony, Antoine Gardel, Morgane Jolivet, Guillaume Brunier, and Franck Dolique.


WRAP-UP 12:20 - 12:30

Share:
Co-organized by OS2, co-sponsored by IGU-CCS
Convener: Hannes Tõnisson | Co-conveners: Margarita Stancheva, Andreas Baas, Giorgio Anfuso, Guillaume Brunier
Displays
| Attendance Fri, 08 May, 10:45–12:30 (CEST)
SSP1.2

Directly observable relative sea-level (RSL) indicators (e.g. shore platforms, coral reef terraces, beach deposits, etc.) are used to constrain paleo sea levels and ice sheet extents and to improve GIA models and future projections of sea-level and ice-sheet responses. Biological proxies associated with and the physical characteristics of RSL indicators can be used to infer paleoclimate and together help inform climatic change and sea-level fluctuations throughout the Pleistocene. The preservation and distribution of these records assists in understanding regional earth surface processes following their deposition.

Recent advances in sea-level studies have called for increased spatiotemporal density of RSL indicators, including submerged and near-field localities, analyzed using standard definitions and methods. This session welcomes contributions to the global record of well-constrained Pleistocene sea-level indicators and associated proxies from a variety of coastal environments, not limited to peak interglacial periods. Re-interpretations of previously described records due to advancement in methods are also welcome.

This session falls within the purview of PALSEA (PALeo constraints on SEA level rise), a PAGES-INQUA Working Group, and the ERC-funded projects, WARMCOASTS and RISeR.

Public information:
The live chat session will be structured to allow abstract authors, who have uploaded display materials, a specific time slot to chat about their research. Four authors will not be presenting their abstracts. Two of them, Jennifer Walker and Andrei Briceag, have uploaded displays and you are encouraged to initiate chat with them through the abstract link.

The final timetable for the session is below. Time is included for general discussion at the end of the session.

Introduction 8:30-8:34
Martina Conti 8:35-8:44
Gino de Gelder 8:45-8:54
Ciro Cerrone 8:55-9:04
Kim Cohen 9:05-9:14
Patrick Boyden 9:15-9:24
Alessio Rovere 9:25-9:34
Teresa Bardaji 9:35-9:44
Carlos Melo 9:45-9:54
Natasha Barlow 9:55-10:04
General Discussion 10:05-10:15

Share:
Co-organized by CL4/GM6
Convener: Deirdre RyanECSECS | Co-conveners: Victor CartelleECSECS, Kim Cohen, Alessio Rovere
Displays
| Attendance Wed, 06 May, 08:30–10:15 (CEST)
GM6.7

The ocean floor hosts a tremendous variety of forms that reflect the action of a range of tectonic, sedimentary, oceanographic and biological processes at multiple spatio-temporal scales. Being able to map the form and shape of the seabed and to understand the processes that shape it is a major prerequisite to ocean and coastal management, nature conservation and hazard assessment as well as a key objective of national and international research programmes and IODP expeditions.

High quality seafloor maps are integral to submarine geomorphic investigations. Acoustic remote-sensing technologies (singlebeam, multibeam, sidescan, interferometric and synthetic-aperture sonars), deployed on various platforms, are fundamental to seafloor mapping. In relatively shallow and transparent waters, optical methods such as aircraft and satellite-based remote sensing and LIDAR are being employed with increasing success. Seafloor maps, especially when combined with sub-seafloor and/or seabed measurements, provide an exciting opportunity to integrate the approaches of geomorphology and geophysics, and to extend quantitative geomorphology offshore. 3D seismic reflection data has also given birth to the discipline of seismic geomorphology, which has provided a 4D perspective to continental margin evolution. Innovative processing and classification software, image analysis, machine and deep-learning applications are advancing developments in seabed-recognition techniques.

The aim of this interdisciplinary session is two-fold: (i) to highlight recent advances in seabed mapping and classification, and (ii) to improve the understanding of the causes and consequences of geomorphic processes shaping underwater landscapes, including submarine erosion and depositional processes, submarine landslides, sediment transfer and deformation, volcanic activity, fluid migration and escape, faulting and folding, among others. Contributions to this session can include work from any physiographic region, ranging from shallow coastal settings to abyssal plains and deep-sea trenches. Datasets of any scale, from satellite-predicted depth to ultra-high resolution swath bathymetry, sub-surface imaging and sampling, are anticipated.

Share:
Co-organized by OS4/SSP3, co-sponsored by IAG
Convener: Aaron Micallef | Co-conveners: Markus Diesing, H. Christian Hass (deceased)(deceased), Sebastian Krastel, Alessandra Savini, Maria Judge, Kim Picard, Anne-Cathrin WölflECSECS
Displays
| Attendance Wed, 06 May, 14:00–18:00 (CEST)
ITS2.4/HS12.1

This session provides a platform for cross-disciplinary science that addresses the continuum of the river and its catchment to the coastal sea. We invite studies across geographical borders; from the source to the sea including groundwater, and across the freshwater-marine water transition. The session welcomes studies that link environmental and social science, address the impacts of climate change and extreme events, and of human activities on water and sediment quality and quantity, hydromorphology, biodiversity, ecosystem functioning and ecosystem services of River-Sea systems, and that provide solutions for sustainable management of the River-Sea social-ecological system.
We need to fully understand how River-Sea-Systems function. How are River-Sea-Systems changing due to human pressures? What is the impact of processes in the catchment on marine systems function, and vice versa? How can we discern between human-induced changes or those driven by natural processes from climate-induced variability and extreme events? What will the tipping points of socio-ecologic system states be and what will they look like? How can we better characterise river-sea systems from the latest generation Earth observation to citizen science based observatories. How can we predict short and long term changes in River-Sea-Systems to manage them sustainably? What is the limit to which it is possible to predict the natural and human-influenced evolution of River-Sea-Systems? The increasing demand to jointly enable intensive human use and environmental protection in river-sea systems requires holistic and integrative research approaches with the ultimate goal of enhanced system understanding.

Share:
Co-organized by BG4/GM6/NH5/OS2/SSP3, co-sponsored by IAS
Convener: Jana Friedrich | Co-conveners: Debora Bellafiore, Dietrich Borchardt, Andrea D'Alpaos, Michael Rode
Displays
| Attendance Mon, 04 May, 14:00–15:45 (CEST)
NH5.5

Coastal areas are vulnerable to ocean, atmospheric and land-based hazards. This vulnerability is likely to be exacerbated in future with, for example, sea level rise, changing intensity of tropical cyclones, increased subsidence (e.g. from groundwater extraction, tectonics), and increasing socio-economic development coupled to coastal squeeze in, particularly, the urbanised low elevation coastal zone. This calls for a better understanding of the underlying physical processes and their interaction with the coast. Numerical models therefore play a crucial role in characterizing coastal hazards and assigning risks to them. Drawing firm conclusions about current and future changes in this environment is challenging because uncertainties are often large, such as coastal impacts of likely and unlikely (also called high-end) sea level changes for the 21st century. Furthermore, studies addressing coastal impacts beyond this century pose new questions regarding the timescale of impacts and adaptation activity. This session invites submissions focusing on assessments and case studies at global and regional scales of potential physical impacts of tsunamis, storm surge, sea level rise, waves, and currents on coasts. We also welcome submissions on near-shore ocean dynamics and also on the socio-economic impact of these hazards along the coast.

Share:
Co-organized by GM6/OS2
Convener: Luke Jackson | Co-conveners: Joern Behrens, Renske de WinterECSECS, Goneri Le Cozannet, Nicoletta Leonardi
Displays
| Attendance Thu, 07 May, 14:00–15:45 (CEST)
NH5.3

Tsunamis and storm surges pose significant hazards to coastal communities around the world. Geological investigations, including both field studies and modelling approaches, significantly enhance our understanding of these events. Past extreme wave events may be reconstructed based on sedimentary and geomorphological evidence from low and high energy environments, from low and high latitude regions and from coastal and offshore areas. The development of novel approaches to identifying, characterising and dating evidence for these events supplements a range of established methods. Nevertheless, the differentiation between evidence for tsunamis and storms still remains a significant question for the community. Numerical and experimental modelling studies complement and enhance field observations and are crucial to improving deterministic and probabilistic approaches to hazard assessment. This session welcomes contributions on all aspects of paleo-tsunami and paleo-storm surge research, including studies that use established methods or recent interdisciplinary advances to reconstruct records of past events, or forecast the probability of future events.

Share:
Co-organized by GM6/SSP3
Convener: Ed GarrettECSECS | Co-conveners: Dominik Brill, Max Engel, Simon Matthias May, Jessica Pilarczyk
Displays
| Attendance Thu, 07 May, 08:30–10:15 (CEST)