EGU21-10024
https://doi.org/10.5194/egusphere-egu21-10024
EGU General Assembly 2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.

Functional role of earthworms to control the hydraulic conductivity of constructed wetlands 

Océane Gilibert1, Dan Tam Costa2, Sabine Sauvage1, Didier Orange3, Yvan Capowiez4, Frédéric Julien1, and Magali Gerino1
Océane Gilibert et al.
  • 1U. Toulouse, UMR5245 Laboratoire Ecologie fonctionnelle et environnement, CNRS, UT3 INP (France)
  • 2EPURTEK, TPE, Toulouse (France)
  • 3INRAe, UMR Eco&Sols, U. Montpellier, IRD, CIRAD, INRAe, SupAgro Montpellier (France)
  • 4INRAe, UMR EMMAH, INRAe, UAPV, Avignon (France)

Wetlands are known for their natural service of water quality regulation. The hyporheic zones of the rivers filter and purify the surface water from the stream and infiltrated waters in soil nearby through the riparian zone. This purification service occurs because of a synergy between the substrate and its biodiversity (including plants, bacteria and other invertebrates). Our study deals with constructed wetlands (CW) as a nature-based solution mimicking wetlands water purification process, to purify wastewaters. The REUSE technology of CW is based on the use of specific layers of gravels and sands inside a close concrete structure, planted with specific sub-aquatic plants, where wastewaters or runoff of stormwaters are introduced to be filtered. The technology of Vertical Flow Constructed Wetlands (VFCW) reproduces the water flux observed in the riparian zone with a gravity flow of water. It is composed of reeds planted on a sandy layer (Ø 0-4 mm) and succession of gravel layers. This substrate can be saturated or unsaturated to reproduce the functioning of the hyporheic zone or the riparian zone respectively. By the time, the substrate is colonized by a community of bacteria producing biofilms which capture the residual organic matter from wastewaters to mineralize them. However, the VFCW substrates tend to clog over time due to the accumulation of organic matter and biofilms. Many studies consider earthworms as one of the solutions to alleviate this clogging, thanks to their burrows recreating macropores and preferential channels which help to improve the dispersion of water into the deep soil. The main goal of this study is to assess the impact of earthworm activities on the hydraulic conductivity of columns composed with the same substrate used in the VFCW. Different densities of earthworms (Eisenia fetida) were introduced (0, 100, 500, 1000 g of earthworms/m²) in these columns to be monitored for 37 days. The hydraulic conductivity was measured every 7 days, aside from day 23 with the addition of 40 g of peat bedding on column surfaces to simulate a high organic matter input. Columns with earthworm density superior to 500 g/m² shows an amelioration of their hydraulic conductivity after 21 days. These densities are also able to restore the hydraulic conductivity of the column in less than 7 days after the setting of clogged condition due to the organic matter input (peat bedding) at the sediment surface. This study showed that the burrowing activity of E. fetida improves the hydraulic flux of a sandy substrate and this impact is dependent on the earthworm density introduced. So, the addition of earthworms in the VFCW could serve as a prevention against clogging.

How to cite: Gilibert, O., Costa, D. T., Sauvage, S., Orange, D., Capowiez, Y., Julien, F., and Gerino, M.: Functional role of earthworms to control the hydraulic conductivity of constructed wetlands , EGU General Assembly 2021, online, 19–30 Apr 2021, EGU21-10024, https://doi.org/10.5194/egusphere-egu21-10024, 2021.