EGU General Assembly 2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.

A new coupled model to shed light on sea-ice--ocean interactions

Guillaume Boutin1, Einar Ólason1, Pierre Rampal1,2, Camille Lique3, Claude Talandier3, and Laurent Brodeau4
Guillaume Boutin et al.
  • 1Nansen Center, Sea ice Modelling Group, Bergen, Norway (
  • 2CNRS, Institut de Géophysique de l’Environnement, Grenoble, France
  • 3Univ. Brest, CNRS, IRD, Ifremer, Laboratoire d’Océanographie Physique et Spatiale, IUEM, Brest 29280, France
  • 4Ocean Next, Grenoble, France

Sea ice is a key component of the earth’s climate system as it modulates air-sea interactions in polar regions. These interactions strongly depend on openings in the sea ice cover, which are associated with fine-scale sea ice deformations. Visco-plastic sea ice rheologies used in most numerical models struggle at representing these fine-scale sea ice dynamics without going to very costly horizontal resolutions (~1km). A solution is to use damage propagation sea ice models, which were shown to reproduce well sea ice deformations with little dependency on the mesh resolution. 

Here we present results from the first ocean--sea-ice coupled model using a rheology with damage propagation. The ocean component is the NEMO-OPA model. The sea ice component is neXtSIM, introducing the newly developed Brittle Bingham-Maxwell rheology. Results show that sea ice dynamics are very well represented from large scales (sea ice drift) to small-scales (sea ice deformation). Sea ice properties relevant for climate, i.e volume and area, also show a remarkable match with satellite observations. This coupled framework opens new opportunities to quantify the impact of small-scale sea ice dynamics on ice-ocean interactions.

How to cite: Boutin, G., Ólason, E., Rampal, P., Lique, C., Talandier, C., and Brodeau, L.: A new coupled model to shed light on sea-ice--ocean interactions, EGU General Assembly 2021, online, 19–30 Apr 2021, EGU21-10122,, 2021.