EGU21-10357
https://doi.org/10.5194/egusphere-egu21-10357
EGU General Assembly 2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.

Towards more physically constrained freshwater injection via eddy permitting simulations of the last glacial cycle

Ryan Love1, Heather Andres1, Alan Condron2, Xu Zhang3,5, Gerrit Lohmann3,4, and Lev Tarasov1
Ryan Love et al.
  • 1Department of Physics and Physical Oceanography, Memorial University of Newfoundland, St. John's, Newfoundland, Canada (rlove@mun.ca)
  • 2Geology and Geophysics, Woods Hole Oceanographic Institution, Woods Hole, Massachusetts, USA
  • 3Alfred Wegener Institute, Helmholtz Centre for Polar and Marine Research, Bremerhaven, Germany
  • 4Department of Environmental Physics and MARUM, University of Bremen, Bremen, Germany
  • 5Key Laboratory of Western China’s Environmental Systems (Ministry of Education), College of Earth and Environmental Sciences, Lanzhou University, Lanzhou, 730000, China

Freshwater, in the form of glacial runoff, is hypothesized to play a critical role in centennial to millennial scale climate variability, eg. the Younger Dryas and Dansgaard Oeschger events. Freshwater injection, or hosing, model experiments demonstrate that freshwater has the capability to generate abrupt climate transitions.  However, in an attempt to mitigate the inability of most models to resolve the smaller-scale features relevant to freshwater transport (such as boundary currents and mesoscale eddies), these hosing experiments commonly apply the entirety of the freshwater directly to the regions of deepwater formation (DWF). Our results indicate that this can inflate the freshwater signal in those regions by as much as four times. We propose a novel method of freshwater injection for such low-resolution models that spatially distributes the freshwater in accord with the results of eddy-permitting modelling. Furthermore, this “freshwater fingerprint” method not only impacts the timing of simulated climate transitions but also can allow us to evaluate how much we are overestimating the effects of freshwater when injected directly into sites of DWF.

 

The freshwater fingerprints we develop are based on a suite of freshwater injection experiments performed using an eddy permitting Younger Dryas configuration of the MITGCM. Freshwater injection locations include the Mackenzie River, Gulf of St. Lawrence, Gulf of Mexico and a location off the coast of Norway, with flux amounts bounded by glacial reconstructions. These simulations indicate that freshwater from the Mackenzie River and Fennoscandia have the largest impact on salinity in most of the conventional sites of DWF (GIN and Labrador Seas, and in these simulations, predominantly the northern North Atlantic due to extensive sea ice), while freshwater from the Gulf of St. Lawrence is effective at freshening only the northern North Atlantic. The Gulf of Mexico has little impact on any DWF region we consider, mostly because the lower but continual flux in our simulations does not allow freshwater to penetrate northward past the Gulf Stream. The dilution of the freshwater signal as it is transported from the site of injection to the DWF zones leads to a reduction in the effective freshwater forcing, making hosing directly over DWF zones even with realistic freshwater amounts unrealistic. Thus, we construct freshwater fingerprints from these simulations by extracting the freshwater anomaly spatial pattern averaged over the last 5 simulation years, vertically integrating the field and normalizing it.


The freshwater fingerprint is then implemented in the COSMOS Earth Systems Model, which is run at resolutions typical for paleoclimate simulations (non-eddy permitting). Initial results show that freshwater from the Mackenzie River using our  fingerprint method leads to a more gradual cooling than if the meltwater is released directly over the hosing region (50-70N). We conclude that hosing over DWF zones, even with realistic freshwater amounts, produces an unrealistically large climate response. Additional results for the remaining injection locations and with the fingerprint implemented in a simpler climate model will be presented.

How to cite: Love, R., Andres, H., Condron, A., Zhang, X., Lohmann, G., and Tarasov, L.: Towards more physically constrained freshwater injection via eddy permitting simulations of the last glacial cycle, EGU General Assembly 2021, online, 19–30 Apr 2021, EGU21-10357, https://doi.org/10.5194/egusphere-egu21-10357, 2021.

Displays

Display file