EGU21-10388, updated on 04 Mar 2021
https://doi.org/10.5194/egusphere-egu21-10388
EGU General Assembly 2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.

Supraglacial lake bathymetry automatically derived from ICESat-2 constraining lake depth estimates from multi-source satellite imagery

Bert Wouters1,2 and Rajashree Tri Datta3
Bert Wouters and Rajashree Tri Datta
  • 1Utrecht University, Institute for Marine and Atmospheric Research, Department of Physics, Utrecht, Netherlands (b.wouters@uu.nl)
  • 2Delft University of Technology, Department of Geoscience and Remote Sensing, Delft, Netherlands
  • 3University of Colorado Boulder,Department of Atmospheric and Oceanic Sciences, Boulder, CO, USA

We introduce an algorithm (Watta), which automatically calculates supraglacial lake bathymmetry and potential ice layers along tracks of the ICESat-2 laser altimeter. Watta uses photon heights estimated by the ICESat-2 ATL03 product and extracts supraglacial lake surface, bottom, corrected depth and (sub)surface ice cover in addition to producing surface heights at the native resolution of the ATL03 photon cloud. These measurements are used to constrain empirical estimates of lake depth from satellite imagery, which were thus far dependent on sparse sets of in-situ measurements for calibration. Imagery sources include Landsat OLI, Sentinel-2 and high-resolution Planet Labs PlanetScope and SkySat data, used here for the first time to calculate supraglacial lake depths.

The Watta algorithm was developed and tested using a set of 46 lakes near Sermeq Kujalleq (Jakobshavn) glacier in Western Greenland, and we use multiple imagery sources to assess the use of the red vs green band to extrapolate depths along a profile to full lake volumes. We use Watta-derived estimates in conjunction with high-resolution imagery from both satellite-based sources (tasked over the season) and nearly-simultaneous Operation IceBridge CAMBOT imagery (on a single airborne flight) for a focused study of the drainage of a single lake over the 2019 melt season.   Our results suggest that the use of multiple imagery sources (both publicly-available and commercial) in combination with altimetry-based depths, can move towards capturing the evolution of supraglacial hydrology at improved spatial and temporal scales.

How to cite: Wouters, B. and Datta, R. T.: Supraglacial lake bathymetry automatically derived from ICESat-2 constraining lake depth estimates from multi-source satellite imagery, EGU General Assembly 2021, online, 19–30 Apr 2021, EGU21-10388, https://doi.org/10.5194/egusphere-egu21-10388, 2021.

Displays

Display file