EGU21-10412
https://doi.org/10.5194/egusphere-egu21-10412
EGU General Assembly 2021
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.

Native bacteria and cyanobacteria consortia improve seedling emergence and establishment in dryland restoration

Frederick Dadzie, Angela Moles, Todd Erickson, and Miriam Munoz-Rojas
Frederick Dadzie et al.
  • University of New South Wales, Faculty of Science, School of Biological, Earth and Environmental Sciences, Sydney, Australia (f.dadzie@unsw.edu.au)

Seed-based ecosystem restoration has huge potential to restore degraded lands but currently less than 10 % of directly sown seeds successfully establish in drylands. Soil microbial communities are important for improving plant establishment in degraded land. However, current methods such as soil translocation can potentially disturb the donor site. In this study, we investigated a novel non-destructive method for improving seedling growth of native plants used in restoration through seed-soil-microbial pelleting. We assessed seedling emergence and survival of Triodia epactia and Acacia inaequilatera seeds inoculated with whole soil bacteria and cyanobacteria consortia retrieved and isolated from a pristine ecosystem. A field experiment was set-up in a 35m x 40m purpose-built rain exclusion shelter that contained reconstructed soil profiles typically encountered in mine rehabilitation programs of Australia’s arid north-west. We hypothesized that inoculated seed-soil pellets would improve seedling emergence and survival of these species. After three weeks of planting, seedling emergence in microbially inoculated Acacia inaequilatera and Triodia epactia were 48% and 55% higher than non-inoculated seeds in bacteria and cyanobacteria, respectively. We also tested whether the use of cyanobacteria consortia as inocula promoted higher seedling emergence over whole soil bacteria. We found that there was no significant difference in seedling emergence between the microbial taxa. We show that, improving the diversity of soil microorganisms improves seedling emergence and the seed-soil pellet method used is viable to improve seed-based restoration outcomes.

Key words: Seed-based restoration, microbial community, cyanobacteria, bacteria community, seedling emergence.

How to cite: Dadzie, F., Moles, A., Erickson, T., and Munoz-Rojas, M.: Native bacteria and cyanobacteria consortia improve seedling emergence and establishment in dryland restoration, EGU General Assembly 2021, online, 19–30 Apr 2021, EGU21-10412, https://doi.org/10.5194/egusphere-egu21-10412, 2021.

Corresponding displays formerly uploaded have been withdrawn.