EGU21-10496, updated on 04 Mar 2021
EGU General Assembly 2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.

Long-lived low Th/U Pacific-type isotopic mantle domain

Xijun Liu1,2, Zhiguo Zhang1, Pengde Liu1, Yujia Song1, and Yao Xiao1
Xijun Liu et al.
  • 1Guangxi Key Laboratory of Hidden Metallic Ore Deposits Exploration,College of Earth Sciences, Guilin University of Technology, Guilin, 541004, China (
  • 2Xinjiang Research Center for Mineral Resources, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi 830011, China China

    The presence of Pacific-type and Indian-type mid-ocean ridge (MORB) isotopic source domains in the upper mantle is a clear manifestation of global-scale mantle compositional heterogeneities. The Indian-type mantle domain is a long-lived feature that can be traced back to, at least, the Palaeozoic Tethyan mantle domain. Little temporal constraints currently exist, however, regarding the longevity of Pacific-type mantle domain. The extinct Paleo-Asia Ocean (PAO), a subsidiary ocean of the Panthalassic Ocean that formed during the breakup of the Rodinia Supercontinent in Mesoproterozoic to Neoproterozoic, can provide a solution to this dilemma. Here, we report the first complete geochemical and Sr, Nd and high-precision Pb isotopic data set for representative mafic rock samples from ophiolites representing remnants of the PAO basement ranging in age from 275 to 624Ma to constrain the composition of their mantle provenance. Data suggest that the sub-PAO mantle has a similar long time-integrated, high Sm/Nd ratio as the global depleted upper mantle, but also shows typical Pacific MORB-like Pb isotopic compositions with lower 207Pb/204Pb(t) and 208Pb/204Pb(t) for given 206Pb/204Pb(t) ratios, and low radiogenic 208Pb*/206Pb*, indicating a long time-integrated, low Th/U ratios. Thus, the Pacific-type mantle domain, like the Indian-type mantle domain, is a long-lived secular mantle domain that can be traced back to early Paleozoic or even to the Neoproterozoic. Data further indicate that the Nd and Pb isotopic distinction between such two large-scale and long-term mantle domains is due to the different evolutionary and tectonic histories of the circum-Pacific (PAO, Paleo- and modern Pacific) and sub-Tethys-Indian oceanic mantle realms. The Panthalassic-Pacific ocean realm had remarkable permanency existing as a big ocean at lease throughout the Phanerozoic, that implies that continental materials were limit to recycle into underlying mantle, thus the underlying mantle was relative free of the continental material contamination and then produce the low time-integrated Th/U Pacific-type mantle domain. In contrast, the break-up of the Gondwana supercontinent makes the Tethys realms to experience repeated opening and closures, which transferred large volume of continental materials into the underlying mantle and then produce the high Th/U Indian-type mantle domain. Our results indicate that the high Sm/Nd and low Th/U ratio of Pacific-type mantle domain most likely are an inherited, long-standing intrinsic feature of the depleted upper mantle derived from the Earth's primordial mantle with less contamination of continental materials. In contrast, the large-scale and long-lived Indian-type mantle heterogeneity is produced by plate tectonic-driven continental material circulation in the upper mantle. Such a genetic link between plate tectonics and mantle chemical geodynamics is crucial to our understanding of how the Earth system works.

    This study was financially supported by the National Natural Science Foundation of China (92055208,41772059) and the CAS “Light of West China” Program (2018-XBYJRC-003).

How to cite: Liu, X., Zhang, Z., Liu, P., Song, Y., and Xiao, Y.: Long-lived low Th/U Pacific-type isotopic mantle domain, EGU General Assembly 2021, online, 19–30 Apr 2021, EGU21-10496,, 2021.