EGU21-10551, updated on 13 Jan 2022
https://doi.org/10.5194/egusphere-egu21-10551
EGU General Assembly 2021
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.

Does Vegetation Really Affect Earthquake-Induced Landslides? Preliminary Analysis of Worldwide Database

Rasis Putra Ritonga1, Takashi Gomi1,2, Roy C. Sidle2,3, Kenta Koyanagi4, Yohei Arata1, and Rozaqqa Noviandi1
Rasis Putra Ritonga et al.
  • 1United Graduate School of Agricultural Science, Tokyo University of Agriculture and Technology, Tokyo, Japan (rasisputra06@gmail.com)
  • 2Institute of Global Innovation Research, Tokyo University of Agriculture and Technology, Tokyo, Japan
  • 3Mountain Societies Research Institute, University of Central Asia, Khorog, Tajikistan
  • 4Faculty of Agriculture, Tokyo University of Agriculture and Technology, Tokyo, Japan

Vegetation is one of key factors controlling landslide occurrence, including frequency, size, and depth. Both horizontal and vertical root networks have important roles in stabilizing hillslopes. For instance, landslide density can be moderated by dense and deep tree root reinforcement below the potential soil slip surfaces. Landslide size can be reduced by extended dense and thick tree root networks, providing cohesive and lateral hillslope reinforcement. Vegetation conditions such as density and composition also alter the landslide occurrence because they are linked to root network density and strength, which are affected by different biogeoclimatic conditions. These findings regarding landslide-vegetation interactions were mostly based on rainfall-induced landslide cases. Preliminary, but yet to be confirmed, findings in Eastern Iburi Earthquake-Induced Landslides (EIL) showed that lateral root reinforcement might moderate the size of landslide scars in forested areas compared to logged areas.  Therefore, our primary objective was to examine the effect of different vegetation composition on EIL based on global data and supplemental analysis.

Our global database of EIL was compiled for a 20-yr period using a literature review and GIS analysis. Documented landslides were restricted to shallow mass movements with depths approximately less than 3 m. For vegetation-related analysis, we used Net Primary Production (NPP) and Leaf Area Index (LAI) derived from MODIS-Terra satellite images. Twenty-seven EIL cases were recorded in our database occurring from 2002 to 2018. Among these, 26% of the total cases occurred in Japan, followed by 18% for both in China and New Zealand. Based on climate types, 22% of total EIL cases occurred in temperate oceanic climate (Cfb) dominated by New Zealand EIL cases, and 15% cases occurred in humid subtropical climate region (Cfa), such as Japan. Moreover, 7% cases occurred in tropical rainforests (Af) and 7% cases in hot desserts climate regions (BWh). Among the 27 recorded cases of EIL, we selected eight EIL cases based on biomass classes, which are low (0-2 gC/m2/day), moderate (3-5 gC/m2/day), and high (>5 gC/m2/day). A power-law cumulative-area distribution of landslide areas showed that low biomass sites had the largest landslides (11,000 m2), followed by moderate biomass (3000 m2), and high biomass (200-3000 m2) with the smallest landslides, possibly associated with the density of vegetation. In low biomass regions, the average LAI was 1.8 m2/m2, which was three times lower compared to regions with higher biomass. This indicates that in regions with sparse vegetation, slope reinforcement by dense lateral root networks was minimal. Future research is focusing on compiling information on landslide scars and root depth to assess the effects of vegetation density and vertical root reinforcement on landslide characteristics in each biomass class.

How to cite: Ritonga, R. P., Gomi, T., Sidle, R. C., Koyanagi, K., Arata, Y., and Noviandi, R.: Does Vegetation Really Affect Earthquake-Induced Landslides? Preliminary Analysis of Worldwide Database, EGU General Assembly 2021, online, 19–30 Apr 2021, EGU21-10551, https://doi.org/10.5194/egusphere-egu21-10551, 2021.

Displays

Display file