EGU21-10564, updated on 04 Mar 2021
EGU General Assembly 2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.

Application of Thermal Taylor Dispersion to Upscaling of Geothermal Processes in Heterogeneous Formations

Jinyu Tang1 and William R. Rossen2
Jinyu Tang and William R. Rossen
  • 1China University of Geosciences (Wuhan), Petroleum Engineering, Wuhan, China (
  • 2Delft University of Technology, Geoscience and Engineering, Delft, Netherlands(

Well-logging data show that geothermal formations typically feature layered heterogeneities. This imposes a challenge in numerical simulations, in particular in the upscaling of geothermal processes. The goal of our study is to develop an approach to (1) simplify the description of heterogeneous geothermal formations and (2) provide an accurate representation of convection/dispersion processes for simulating the up-scaled system.

In geothermal processes, transverse thermal conduction causes extra spreading of the cooling front: thermal Taylor dispersion. We derive a model from an energy balance for effective thermal diffusivity, αeff, to represent this phenomenon in layered media. αeff, accounting for transverse heat conduction, is much greater than the longitudinal thermal diffusivity, leading to a remarkably larger effective dispersion. A ratio of times is defined for longitudinal thermal convection and transverse thermal conduction, referred to as transverse thermal-conduction number NTC. The value of NTC is an indicator of thermal equilibrium in the vertical cross-section. Both NTC and αeff equations are verified by a match with numerical solutions for convection/conduction in a two-layer system. For NTC > 5, the system behaves as a single layer with thermal diffusivity αeff.

When NTC > 5, a two-layer system can be combined and represented with αeff and average properties of the two layers. We illustrate upscaling approach for simulation of geothermal processes in stratified formations, by grouping layers based on the condition of NTC > 5 and the αeff model. Specifically, NTC is calculated for every adjacent two layers, and the paired layers with a maximum value of NTC are grouped first. This procedure repeats on the grouped system until no adjacent layers meet the criterion NTC > 5. The upscaled layer properties of the grouped system are used as new inputs in the numerical simulations. The effectiveness of the upscaling approach is validated by a good agreement in numerical solutions for thermal convection/dispersion using original and average layer properties, respectively (Figs. 1 and 2 in the Supplementary Data File). The upscaling approach is applied to well-log data of a geothermal reservoir in Copenhagen featuring many interspersed layers. After upscaling, the formation with 93 layers of thickness 1 – 3 meters is upscaled to 12 layers (Fig. 3 in the Supplementary Data File). The effective thermal diffusivity αeff in the flow direction is about a factor of 10 times greater than original thermal diffusivity of the rock. Thus, αeff should be used as simulation inputs for representing more accurately geothermal processes in the up-scaled system.



How to cite: Tang, J. and Rossen, W. R.: Application of Thermal Taylor Dispersion to Upscaling of Geothermal Processes in Heterogeneous Formations, EGU General Assembly 2021, online, 19–30 Apr 2021, EGU21-10564,, 2021.


Display file