Using Sentinel-5P time-series products for Nitrogen Dioxide (NO2) Spatio-Temporal Analysis over Europe During the Coronavirus Pandemic Lockdown
- Faculty of Geography, University of Bucharest, Bucharest, Romania
Nitrogen dioxide (NO2) is one of the main air quality pollutants of concern in many urban and industrial areas worldwide. Being emitted by fossil fuel burning activities including mainly road traffic, the NO2 pollution is responsible for population health degradation and secondary pollutants formation as nitric acid and ozone. In the European region, almost 20 countries exceeded in 2017 the NO2 annual limit values imposed by European Commission Directive 2008/50/EC (EEA, 2019). Therefore, NO2 pollution monitoring and regulation is a necessary task to help decision makers to search for a sustainable solution for environmental quality and population health status improvement. In this study, we propose a comparative analysis of the tropospheric NO2 column density spatial configuration over Europe between similar periods from 2019 and 2020, based on ESA Copernicus Sentinel-5P products. Our results highlight the NO2 pollution dynamics over the abrupt transition from a normal condition situation to the COVID-19 outbreak context, characterized by short-time decrease of traffic intensities and industrial activities, this situation being also reflected by the national level statistics referring to COVID-19 cases and economic indicatiors. The validation approach provides high correlation between TROPOMI derived data and independent data from ground-based observations with encouraging values of the R2 ranging between 0.5 and 0.75 in different locations.
How to cite: Vîrghileanu, M., Săvulescu, I., Mihai, B.-A., Nistor, C., and Dobre, R.: Using Sentinel-5P time-series products for Nitrogen Dioxide (NO2) Spatio-Temporal Analysis over Europe During the Coronavirus Pandemic Lockdown, EGU General Assembly 2021, online, 19–30 Apr 2021, EGU21-10882, https://doi.org/10.5194/egusphere-egu21-10882, 2021.