EGU21-11011
https://doi.org/10.5194/egusphere-egu21-11011
EGU General Assembly 2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.

The importance of the turbulent ship wake regime for pollutant fate and transport

Amanda T. Nylund1, Rickard Bensow1, Mattias Liefvendahl1,2, Arash Eslamdoost1, Anders Tengberg1,4, Ulf Mallast3, Ida-Maja Hassellöv1, Göran Broström4, and Lars Arneborg5
Amanda T. Nylund et al.
  • 1Chalmers University of Technology, Department of Mechanics and Maritime Sciences, Gothenburg, Sweden
  • 2Swedish Defence Research Agency (FOI), Stockholm, Sweden
  • 3Department Monitoring and Exploration Technologies, Helmholtz Centre for Environmental Research, Leipzig, Germany
  • 4University of Gothenburg, Department of Marine Sciences, Gothenburg, Sweden
  • 5Swedish Meteorological and Hydrological Institute (SMHI), Gothenburg, Sweden

This interdisciplinary study with implications for fate and transport of pollutants from shipping, investigates the previously overlooked phenomenon of ship induced mixing. When a ship moves through water, the hull and propeller induce a long-lasting turbulent wake. Natural waters are usually stratified, and the stratification influences both the vertical and horizontal extent of the wake. The altered turbulent regime in shipping lanes governs the distribution of discharged pollutants, e.g. PAHs, metals, nutrients and non-indigenous species. The ship related pollutant load follows the trend in volumes of maritime trade, which has almost tripled since the 1980s. In heavily trafficked areas there may be one ship passage every ten minutes; today shipping constitutes a significant source of pollution.

To understand the environmental impact of shipping related pollutants, it is essential to know their fate following regional scale transport. However, previous modelling efforts assuming discharge at the surface will not adequately reflect the input values in the regional models. Therefore, it is urgent to bridge the gaps between the spatiotemporal scales from high-resolution numerical modeling of the flow hydrodynamics around the ship, mixing processes and interaction of the ship and wake with stratification, and parameterization in regional oceanographic modeling. Here this knowledge gap is addressed by combining an array of methods; in situ measurements, remote sensing and numerical flow modeling.

A bottom-mounted Acoustic Doppler Current Profiler was placed under a ship lane, for in-situ measurements of the vertical and temporal expansion of turbulent wakes. In addition, ex-situ measurements with Landsat 8 Thermal Infrared Sensor were used to estimate the longevity and spatial extent of the thermal signal from ship wakes. The computational modelling was conducted using well resolved 3D RANS modelling for the hull and the near wake (up to five ship lengths aft), a method typically used for the near wake behaviour in analysing the propulsion system. As this is not feasible to use for a far wake analysis, the predicted wake is then used as input for a 2D+time modelling for the sustained wake up to 30min after the ship passage. These results, both from measurements and numerical models, are then combined to analyse how ship-induced turbulence influence at what depth discharged pollutants will be found.

This first step to cover the mesoscales of the turbulent ship wake is necessary to assess the impact of ship related pollution. In-situ measurements show median wake depth 13.5m (max 31.5m) and median longevity 10min (max 29min). Satellite data show median thermal wake signal 13.7km (max 62.5km). A detailed simulation model will only be possible to use for the first few 100m of the ship wake, but the coupling to a simplified 2D+time modelling shows a promising potential to bridge our understanding of the impact of the ship wake on the larger scales. Our model results indicate that the natural stratification affects the distribution and retention of pollutants in the wake region. The depth of discharge and the wake turbulence characteristics will in turn affect the fate and transport of pollutants on larger spatiotemporal scales.

How to cite: Nylund, A. T., Bensow, R., Liefvendahl, M., Eslamdoost, A., Tengberg, A., Mallast, U., Hassellöv, I.-M., Broström, G., and Arneborg, L.: The importance of the turbulent ship wake regime for pollutant fate and transport, EGU General Assembly 2021, online, 19–30 Apr 2021, EGU21-11011, https://doi.org/10.5194/egusphere-egu21-11011, 2021.

Displays

Display file