EGU General Assembly 2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.

Chemical composition of PM1 and PM10 fraction collected in urban atmosphere of Krakow, southern Poland during 2018-2019 period

Alicja Skiba1,2, Przemysław Furman1,2, Katarzyna Styszko2, Anne Kasper-Giebl3, Anna Tobler4, Roberto Casotto4, Andre Prevot4, and Kazimierz Różański1
Alicja Skiba et al.
  • 1AGH University of Science and Technology, Faculty of Physics and Applied Computer Science, Krakow, Poland
  • 2AGH University of Science and Technology, Faculty of Energy and Fuels, Krakow, Poland
  • 3TU Wien, Institute of Chemical Technologies and Analytics, Vienna, Austria
  • 4Paul Scherrer Institute, Laboratory of Atmospheric Chemistry, Villigen, Switzerland

Two fractions of suspended particulate matter (PM1 and PM10) were collected on daily basis in the urban atmosphere of Krakow, southern Poland, during one-year period (April 2018 - April 2019). The following compounds were examined: elemental carbon (EC), organic carbon (OC), carbohydrates (among them levoglucosan – a recognized biomass tracer),  as well as ions (Li+, Na+, NH4+, K+, Mg2+, Ca2+, F-, Cl-, NO2-, Br-. NO32-, PO43-, SO42-). Thermal-optical analysis with a Sunset carbon analyzer, (Sunset Lab. Inc.) was used to obtain information about organic and elemental carbon concentration, while HPAE-PAD Dionex ICS 3000 system was employed to determine the concentration of 14 carbohydrates. Concentration of ions was analysed using isocratic ion chromatography on an ICS-1100 instrument (Thermo Scientific).

Distinct seasonality of chemical composition of PM1 and PM10 fraction was observed. Levoglucosan concentration ranged from 0.01 ug/m3 to 0.90 ug/m3 (PM1 fraction) and from 0.01 to ug/m3 to 1.95 ug/m3 (PM10 fraction) during the analysed period. Arabitol and Mannitol were detected only in PM10 fraction and ranged from 0.01 ug/m3 and 0.02 ug/m3, during winter season and to 0.15 ug/m3 and 0.10 ug/m3, respectively, during summer season. Significant seasonal differences were also found for ion concentrations: from 0.49 μg/m3 (SO42-), 0.15 μg/m3 (NO3-) and 0.05 μg/m3 (NH4+) during summer season, to be compared with 11.16 μg/m3 (SO42-), 9.30 μg/m3 (NO3-), 9.25 μg/m3 (NH4+) for winter season. The concentration of organic and elemental carbon in PM10 fraction ranged from 2.0 μg/m3 to 48.9 μg/m3 (OC) and from 0.3 μg/m3 to 10.0 μg/m3 (EC), to be compared  with 1.4 μg/m3 to 18.1 μg/m3 (OC) and 0.2 μg/m3 to 4.4 μg/m3 (EC) for PM1 fraction.



The presented work was funded by Polish National Science Centre (project No.  2019/33/N/ST10/02925) as well as COST Action COLOSSAL (CA16109) of EU. Work of AS and PF have been partly supported by the EU Project POWR.03.02.00-00-I004/16. Analytical infrastructure of AGH Center of Energy in Krakow was employed in analyses of selected ions.

How to cite: Skiba, A., Furman, P., Styszko, K., Kasper-Giebl, A., Tobler, A., Casotto, R., Prevot, A., and Różański, K.: Chemical composition of PM1 and PM10 fraction collected in urban atmosphere of Krakow, southern Poland during 2018-2019 period, EGU General Assembly 2021, online, 19–30 Apr 2021, EGU21-11013,, 2021.

Display materials

Display file